progs/token.scala
changeset 625 6709fa87410b
parent 624 8d0af38389bc
child 626 2d91b2107656
equal deleted inserted replaced
624:8d0af38389bc 625:6709fa87410b
     1 // A Simple Tokenizer according to Sulzmann & Lu
       
     2 
       
     3 import scala.language.implicitConversions    
       
     4 import scala.language.reflectiveCalls
       
     5 
       
     6 abstract class Rexp 
       
     7 case object ZERO extends Rexp
       
     8 case object ONE extends Rexp
       
     9 case class CHAR(c: Char) extends Rexp
       
    10 case class ALT(r1: Rexp, r2: Rexp) extends Rexp 
       
    11 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp 
       
    12 case class STAR(r: Rexp) extends Rexp 
       
    13 case class RECD(x: String, r: Rexp) extends Rexp
       
    14    
       
    15 abstract class Val
       
    16 case object Empty extends Val
       
    17 case class Chr(c: Char) extends Val
       
    18 case class Sequ(v1: Val, v2: Val) extends Val
       
    19 case class Left(v: Val) extends Val
       
    20 case class Right(v: Val) extends Val
       
    21 case class Stars(vs: List[Val]) extends Val
       
    22 case class Rec(x: String, v: Val) extends Val
       
    23    
       
    24 // some convenience for typing in regular expressions
       
    25 def charlist2rexp(s : List[Char]): Rexp = s match {
       
    26   case Nil => ONE
       
    27   case c::Nil => CHAR(c)
       
    28   case c::s => SEQ(CHAR(c), charlist2rexp(s))
       
    29 }
       
    30 implicit def string2rexp(s : String) : Rexp = 
       
    31   charlist2rexp(s.toList)
       
    32 
       
    33 implicit def RexpOps(r: Rexp) = new {
       
    34   def | (s: Rexp) = ALT(r, s)
       
    35   def % = STAR(r)
       
    36   def ~ (s: Rexp) = SEQ(r, s)
       
    37 }
       
    38 
       
    39 implicit def stringOps(s: String) = new {
       
    40   def | (r: Rexp) = ALT(s, r)
       
    41   def | (r: String) = ALT(s, r)
       
    42   def % = STAR(s)
       
    43   def ~ (r: Rexp) = SEQ(s, r)
       
    44   def ~ (r: String) = SEQ(s, r)
       
    45   def $ (r: Rexp) = RECD(s, r)
       
    46 }
       
    47 
       
    48 // A test for more conveninet syntax
       
    49 val re : Rexp = ("ab" | "a") ~ ("b" | ONE)
       
    50 
       
    51 // the nullable function: tests whether the regular 
       
    52 // expression can recognise the empty string
       
    53 def nullable (r: Rexp) : Boolean = r match {
       
    54   case ZERO => false
       
    55   case ONE => true
       
    56   case CHAR(_) => false
       
    57   case ALT(r1, r2) => nullable(r1) || nullable(r2)
       
    58   case SEQ(r1, r2) => nullable(r1) && nullable(r2)
       
    59   case STAR(_) => true
       
    60   case RECD(_, r1) => nullable(r1)
       
    61 }
       
    62 
       
    63 // the derivative of a regular expression w.r.t. a character
       
    64 def der (c: Char, r: Rexp) : Rexp = r match {
       
    65   case ZERO => ZERO
       
    66   case ONE => ZERO
       
    67   case CHAR(d) => if (c == d) ONE else ZERO
       
    68   case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
       
    69   case SEQ(r1, r2) => 
       
    70     if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
       
    71     else SEQ(der(c, r1), r2)
       
    72   case STAR(r) => SEQ(der(c, r), STAR(r))
       
    73   case RECD(_, r1) => der(c, r1)
       
    74 }
       
    75 
       
    76 // the derivative w.r.t. a string (iterates der)
       
    77 def ders (s: List[Char], r: Rexp) : Rexp = s match {
       
    78   case Nil => r
       
    79   case c::s => ders(s, der(c, r))
       
    80 }
       
    81 
       
    82 // extracts a string from value
       
    83 def flatten(v: Val) : String = v match {
       
    84   case Empty => ""
       
    85   case Chr(c) => c.toString
       
    86   case Left(v) => flatten(v)
       
    87   case Right(v) => flatten(v)
       
    88   case Sequ(v1, v2) => flatten(v1) + flatten(v2)
       
    89   case Stars(vs) => vs.map(flatten).mkString
       
    90   case Rec(_, v) => flatten(v)
       
    91 }
       
    92 
       
    93 // extracts an environment from a value;
       
    94 // used for tokenise a string
       
    95 def env(v: Val) : List[(String, String)] = v match {
       
    96   case Empty => Nil
       
    97   case Chr(c) => Nil
       
    98   case Left(v) => env(v)
       
    99   case Right(v) => env(v)
       
   100   case Sequ(v1, v2) => env(v1) ::: env(v2)
       
   101   case Stars(vs) => vs.flatMap(env)
       
   102   case Rec(x, v) => (x, flatten(v))::env(v)
       
   103 }
       
   104 
       
   105 // The Injection Part of the Tokeniser
       
   106 
       
   107 // calculates a value for how a nullable regex 
       
   108 // matches the empty string 
       
   109 def mkeps(r: Rexp) : Val = r match {
       
   110   case ONE => Empty
       
   111   case ALT(r1, r2) => 
       
   112     if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
       
   113   case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
       
   114   case STAR(r) => Stars(Nil)
       
   115   case RECD(x, r) => Rec(x, mkeps(r))
       
   116 }
       
   117 
       
   118 // injects back a character into a value
       
   119 def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
       
   120   case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
       
   121   case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
       
   122   case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
       
   123   case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
       
   124   case (ALT(r1, r2), Left(v1)) => Left(inj(r1, c, v1))
       
   125   case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2))
       
   126   case (CHAR(d), Empty) => Chr(c) 
       
   127   case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
       
   128 }
       
   129 
       
   130 // the main lexing function (produces a value)
       
   131 def lex(r: Rexp, s: List[Char]) : Val = s match {
       
   132   case Nil => if (nullable(r)) mkeps(r) 
       
   133               else throw new Exception("Not matched")
       
   134   case c::cs => inj(r, c, lex(der(c, r), cs))
       
   135 }
       
   136 
       
   137 def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
       
   138 
       
   139 // a simple test for extracting an environment
       
   140 val re1 : Rexp = ("first" $ ("a" | "ab")) ~ ("second" $ ("b" | ONE))
       
   141 env(lexing(re1, "ab"))
       
   142 
       
   143 // some "rectification" functions for simplification
       
   144 def F_ID(v: Val): Val = v
       
   145 def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
       
   146 def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
       
   147 def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
       
   148   case Right(v) => Right(f2(v))
       
   149   case Left(v) => Left(f1(v))
       
   150 }
       
   151 def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
       
   152   case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
       
   153 }
       
   154 def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) = 
       
   155   (v:Val) => Sequ(f1(Empty), f2(v))
       
   156 def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) = 
       
   157   (v:Val) => Sequ(f1(v), f2(Empty))
       
   158 def F_RECD(f: Val => Val) = (v:Val) => v match {
       
   159   case Rec(x, v) => Rec(x, f(v))
       
   160 }
       
   161 def F_ERROR(v: Val): Val = throw new Exception("error")
       
   162 
       
   163 // simplification of regular expressions returns now also 
       
   164 // an rectification function; no simplification under STAR 
       
   165 def simp(r: Rexp): (Rexp, Val => Val) = r match {
       
   166   case ALT(r1, r2) => {
       
   167     val (r1s, f1s) = simp(r1)
       
   168     val (r2s, f2s) = simp(r2)
       
   169     (r1s, r2s) match {
       
   170       case (ZERO, _) => (r2s, F_RIGHT(f2s))
       
   171       case (_, ZERO) => (r1s, F_LEFT(f1s))
       
   172       case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
       
   173                 else (ALT (r1s, r2s), F_ALT(f1s, f2s)) 
       
   174     }
       
   175   }
       
   176   case SEQ(r1, r2) => {
       
   177     val (r1s, f1s) = simp(r1)
       
   178     val (r2s, f2s) = simp(r2)
       
   179     (r1s, r2s) match {
       
   180       case (ZERO, _) => (ZERO, F_ERROR)
       
   181       case (_, ZERO) => (ZERO, F_ERROR)
       
   182       case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
       
   183       case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
       
   184       case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
       
   185     }
       
   186   }
       
   187   case RECD(x, r1) => {
       
   188     val (r1s, f1s) = simp(r1)
       
   189     (RECD(x, r1s), F_RECD(f1s))
       
   190   }
       
   191   case r => (r, F_ID)
       
   192 }
       
   193 
       
   194 // lexing functions including simplification
       
   195 def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
       
   196   case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
       
   197   case c::cs => {
       
   198     val (r_simp, f_simp) = simp(der(c, r))
       
   199     inj(r, c, f_simp(lex_simp(r_simp, cs)))
       
   200   }
       
   201 }
       
   202 
       
   203 def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)
       
   204 
       
   205 lexing_simp(("a" | "ab") ~ ("b" | ""), "ab")
       
   206 
       
   207 // The Lexing Rules for a Small While Language
       
   208 
       
   209 def PLUS(r: Rexp) = r ~ r.%
       
   210 
       
   211 val SYM = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
       
   212 val DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
       
   213 val ID = SYM ~ (SYM | DIGIT).% 
       
   214 val NUM = PLUS(DIGIT)
       
   215 val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
       
   216 val SEMI: Rexp = ";"
       
   217 val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
       
   218 val WHITESPACE = PLUS(" " | "\n" | "\t")
       
   219 val RPAREN: Rexp = ")"
       
   220 val LPAREN: Rexp = "("
       
   221 val BEGIN: Rexp = "{"
       
   222 val END: Rexp = "}"
       
   223 val STRING: Rexp = "\"" ~ SYM.% ~ "\""
       
   224 
       
   225 
       
   226 val WHILE_REGS = (("k" $ KEYWORD) | 
       
   227                   ("i" $ ID) | 
       
   228                   ("o" $ OP) | 
       
   229                   ("n" $ NUM) | 
       
   230                   ("s" $ SEMI) | 
       
   231                   ("str" $ STRING) |
       
   232                   ("p" $ (LPAREN | RPAREN)) | 
       
   233                   ("b" $ (BEGIN | END)) | 
       
   234                   ("w" $ WHITESPACE)).%
       
   235 
       
   236 //   Testing
       
   237 //============
       
   238 
       
   239 def time[T](code: => T) = {
       
   240   val start = System.nanoTime()
       
   241   val result = code
       
   242   val end = System.nanoTime()
       
   243   println((end - start)/1.0e9)
       
   244   result
       
   245 }
       
   246 
       
   247 val r1 = ("a" | "ab") ~ ("bcd" | "c")
       
   248 println(lexing(r1, "abcd"))
       
   249 
       
   250 val r2 = ("" | "a") ~ ("ab" | "b")
       
   251 println(lexing(r2, "ab"))
       
   252 
       
   253 
       
   254 // Two Simple While Tests
       
   255 //========================
       
   256 println("prog0 test")
       
   257 
       
   258 val prog0 = """read if"""
       
   259 println(env(lexing_simp(WHILE_REGS, prog0)))
       
   260 
       
   261 println("prog1 test")
       
   262 
       
   263 val prog1 = """read  n; write (n)"""
       
   264 println(env(lexing_simp(WHILE_REGS, prog1)))
       
   265 
       
   266 
       
   267 // Bigger Test
       
   268 //=============
       
   269 
       
   270 val prog2 = """
       
   271 write "fib";
       
   272 read n;
       
   273 minus1 := 0;
       
   274 minus2 := 1;
       
   275 while n > 0 do {
       
   276   temp := minus2;
       
   277   minus2 := minus1 + minus2;
       
   278   minus1 := temp;
       
   279   n := n - 1
       
   280 };
       
   281 write "result";
       
   282 write minus2
       
   283 """
       
   284 
       
   285 println("Tokens")
       
   286 println(env(lexing_simp(WHILE_REGS, prog2)))
       
   287 println(env(lexing_simp(WHILE_REGS, prog2)).filterNot{_._1 == "w"}.mkString("\n"))
       
   288 
       
   289 // some more timing tests with
       
   290 // i copies of the program
       
   291 
       
   292 for (i <- 0 to 20 by 10) {
       
   293   print(i.toString + ":  ")
       
   294   time(lexing_simp(WHILE_REGS, prog2 * i))
       
   295 }
       
   296 
       
   297 
       
   298 val fib = """
       
   299 write "Fib";
       
   300 read n;
       
   301 minus1 := 0;
       
   302 minus2 := 1;
       
   303 while n > 0 do {
       
   304 temp := minus2;
       
   305 minus2 := minus1 + minus2;
       
   306 minus1 := temp;
       
   307 n := n - 1
       
   308 };
       
   309 write "Result";
       
   310 write minus2
       
   311 """
       
   312 
       
   313 println(env(lexing_simp(WHILE_REGS, prog2)).filterNot{_._1 == "w"})