hws/hw03.tex
changeset 264 4deef8ac5d72
parent 258 1e4da6d2490c
child 267 a1544b804d1e
equal deleted inserted replaced
263:92e6985018ae 264:4deef8ac5d72
     1 \documentclass{article}
     1 \documentclass{article}
     2 \usepackage{charter}
     2 \usepackage{../style}
     3 \usepackage{hyperref}
     3 \usepackage{../graphics}
     4 \usepackage{amssymb}
       
     5 \usepackage{amsmath}
       
     6 
     4 
     7 \begin{document}
     5 \begin{document}
     8 
     6 
     9 \section*{Homework 3}
     7 \section*{Homework 3}
    10 
     8 
    29 
    27 
    30 \begin{center}
    28 \begin{center}
    31 $\textit{zeroable(r)} \;\text{if and only if}\; L(r) = \varnothing$
    29 $\textit{zeroable(r)} \;\text{if and only if}\; L(r) = \varnothing$
    32 \end{center}
    30 \end{center}
    33 
    31 
    34 \item Define the tokens and regular expressions for a language
    32 \item Given the alphabet $\{a,b\}$. Draw the automaton that has two states, say  $q_0$ and $q_1$.
    35       consisting of numbers, left-parenthesis $($,
    33 The starting state is $q_0$ and the final state is $q_1$. The transition
    36       right-parenthesis $)$, identifiers and the operations $+$,
    34 function is given by
    37       $-$ and $*$. Can the following strings in this language
       
    38       be lexed?
       
    39 
    35 
    40 \begin{itemize}
    36 \begin{center}
    41   \item $(a + 3) * b$
    37 \begin{tabular}{l}
    42   \item $)()++ -33$
    38 $(q_0, a) \rightarrow q_0$\\
    43   \item $(a / 3) * 3$
    39 $(q_0, b) \rightarrow q_1$\\
    44 \end{itemize}
    40 $(q_1, b) \rightarrow q_1$
       
    41 \end{tabular}
       
    42 \end{center}
    45 
    43 
    46 In case they can, can you give the corresponding token
    44 What is the languages recognised by this automaton?
    47 sequences.
    45 
       
    46 \item Give a non-deterministic finite automaton that can recognise 
       
    47 the language $L(a\cdot (a + b)^* \cdot c)$. 
       
    48 
       
    49 
       
    50 \item Given the following deterministic finite automaton over the alphabet $\{0, 1\}$,
       
    51 find the corresponding minimal automaton. In case states can be merged,
       
    52 state clearly which states can
       
    53 be merged.
       
    54 
       
    55 \begin{center}
       
    56 \begin{tikzpicture}[scale=3, line width=0.7mm]
       
    57   \node[state, initial]        (q0) at ( 0,1) {$q_0$};
       
    58   \node[state]                    (q1) at ( 1,1) {$q_1$};
       
    59   \node[state, accepting] (q4) at ( 2,1) {$q_4$};
       
    60   \node[state]                    (q2) at (0.5,0) {$q_2$};
       
    61   \node[state]                    (q3) at (1.5,0) {$q_3$};
       
    62   \path[->] (q0) edge node[above] {$0$} (q1)
       
    63                   (q0) edge node[right] {$1$} (q2)
       
    64                   (q1) edge node[above] {$0$} (q4)
       
    65                   (q1) edge node[right] {$1$} (q2)
       
    66                   (q2) edge node[above] {$0$} (q3)
       
    67                   (q2) edge [loop below] node {$1$} ()
       
    68                   (q3) edge node[left] {$0$} (q4)
       
    69                   (q3) edge [bend left=95, looseness = 2.2] node [left=2mm] {$1$} (q0)
       
    70                   (q4) edge [loop right] node {$0, 1$} ()
       
    71                   ;
       
    72 \end{tikzpicture}
       
    73 \end{center}
       
    74 
       
    75 \item Define the language $L(M)$ accepted by a deterministic finite automaton $M$.
    48 
    76 
    49 \end{enumerate}
    77 \end{enumerate}
    50 
    78 
    51 
    79 
    52 
    80