1143 \end{center} |
1149 \end{center} |
1144 |
1150 |
1145 \end{frame} |
1151 \end{frame} |
1146 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1152 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1147 |
1153 |
1148 \begin{frame}[c] |
1154 % begin{frame}[c] |
1149 \begin{mybox3}{} |
1155 % \begin{mybox3}{} |
1150 der c (r*) def = (der c r) $\cdot$ (r*)\smallskip\\ |
1156 % der c (r*) def = (der c r) $\cdot$ (r*)\smallskip\\ |
1151 Why in the example (slide 19) the first step is: |
1157 % Why in the example (slide 19) the first step is: |
1152 der a ((a $\cdot$ b) + b)* = (der a ((a $\cdot$ b) + b)) $\cdot$ r\smallskip\\ |
1158 % der a ((a $\cdot$ b) + b)* = (der a ((a $\cdot$ b) + b)) $\cdot$ r\smallskip\\ |
1153 and not\smallskip\\ |
1159 % and not\smallskip\\ |
1154 der a ((a $\cdot$ b) + b) = (der a ((a $\cdot$ b) + b)) · (r*) |
1160 % der a ((a $\cdot$ b) + b) = (der a ((a $\cdot$ b) + b)) · (r*) |
1155 \end{mybox3} |
1161 % \end{mybox3} |
1156 \end{frame} |
1162 % \end{frame} |
1157 |
1163 |
1158 \begin{frame}[c] |
1164 % \begin{frame}[c] |
1159 \begin{mybox3}{} |
1165 % \begin{mybox3}{} |
1160 Would it be possible to find and go over a few examples from the |
1166 % Would it be possible to find and go over a few examples from the |
1161 Brzozowski Algorithm, as it doesn't seem to be as simple as it |
1167 % Brzozowski Algorithm, as it doesn't seem to be as simple as it |
1162 sounds? |
1168 % sounds? |
1163 \end{mybox3} |
1169 % \end{mybox3} |
1164 \end{frame} |
1170 % \end{frame} |
1165 |
1171 |
1166 \begin{frame}[c] |
1172 % \begin{frame}[c] |
1167 \begin{mybox3}{} |
1173 % \begin{mybox3}{} |
1168 Is it possible to make a visual example of how using simp() function |
1174 % Is it possible to make a visual example of how using simp() function |
1169 on a (a*)*.b regular expression reduces its runtime? If not it's |
1175 % on a (a*)*.b regular expression reduces its runtime? If not it's |
1170 fine. I am just very surprised that it is so efficient. |
1176 % fine. I am just very surprised that it is so efficient. |
1171 \end{mybox3} |
1177 % \end{mybox3} |
1172 \end{frame} |
1178 % \end{frame} |
1173 |
1179 |
1174 \begin{frame}[c] |
1180 % \begin{frame}[c] |
1175 \begin{mybox3}{} |
1181 % \begin{mybox3}{} |
1176 Do you think the algorithm can be still improved (made faster)? |
1182 % Do you think the algorithm can be still improved (made faster)? |
1177 \end{mybox3} |
1183 % \end{mybox3} |
1178 \end{frame} |
1184 % \end{frame} |
1179 |
1185 |
1180 \begin{frame}[c] |
1186 % \begin{frame}[c] |
1181 \begin{mybox3}{} |
1187 % \begin{mybox3}{} |
1182 Do the regular expression matchers in Python and Java 8 have more |
1188 % Do the regular expression matchers in Python and Java 8 have more |
1183 features than the one implemented in this module? Or is there |
1189 % features than the one implemented in this module? Or is there |
1184 another reason for their inefficiency? |
1190 % another reason for their inefficiency? |
1185 \end{mybox3} |
1191 % \end{mybox3} |
1186 \end{frame} |
1192 % \end{frame} |
1187 |
1193 |
1188 \begin{frame}[c] |
1194 % \begin{frame}[c] |
1189 \begin{mybox3}{} |
1195 % \begin{mybox3}{} |
1190 Will we discuss the broader Chomsky hierarchy of languages at some |
1196 % Will we discuss the broader Chomsky hierarchy of languages at some |
1191 point? |
1197 % point? |
1192 \end{mybox3} |
1198 % \end{mybox3} |
1193 \end{frame} |
1199 % \end{frame} |
1194 |
1200 |
1195 \begin{frame}<1-8>[c] |
1201 \begin{frame}<1-8>[c] |
1196 \end{frame} |
1202 \end{frame} |
1197 |
1203 |
1198 \begin{frame}[c] |
1204 \begin{frame}[c] |