1490 %  | 
  1490 %  | 
  1491 %\end{frame} | 
  1491 %\end{frame} | 
  1492 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
  1492 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
  1493   | 
  1493   | 
  1494   | 
  1494   | 
  1495   | 
         | 
  1496 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
  1497 \begin{frame}[c] | 
         | 
  1498   | 
         | 
  1499 \begin{center} | 
         | 
  1500 \begin{tikzpicture}[scale=2,>=stealth',very thick, | 
         | 
  1501                              every state/.style={minimum size=0pt,draw=blue!50,very thick,fill=blue!20},] | 
         | 
  1502   \only<-7>{\node[state, initial] (q0) at ( 0,1) {$\mbox{Q}_0$};} | 
         | 
  1503   \only<8->{\node[state, initial,accepting] (q0) at ( 0,1) {$\mbox{Q}_0$};}                            | 
         | 
  1504   \only<-7>{\node[state] (q1) at ( 1,1) {$\mbox{Q}_1$};} | 
         | 
  1505   \only<8->{\node[state,accepting] (q1) at ( 1,1) {$\mbox{Q}_1$};} | 
         | 
  1506   \node[state] (q2) at ( 2,1) {$\mbox{Q}_2$}; | 
         | 
  1507   \path[->] (q0) edge[bend left] node[above] {\alert{$a$}} (q1) | 
         | 
  1508                   (q1) edge[bend left] node[above] {\alert{$b$}} (q0) | 
         | 
  1509                   (q2) edge[bend left=50] node[below] {\alert{$b$}} (q0) | 
         | 
  1510                   (q1) edge node[above] {\alert{$a$}} (q2) | 
         | 
  1511                   (q2) edge [loop right] node {\alert{$a$}} () | 
         | 
  1512                   (q0) edge [loop below] node {\alert{$b$}} () | 
         | 
  1513             ;  | 
         | 
  1514 \end{tikzpicture} | 
         | 
  1515 \end{center}\bigskip | 
         | 
  1516   | 
         | 
  1517 \begin{center} | 
         | 
  1518 \begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l} | 
         | 
  1519 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\ONE + \mbox{Q}_0\,b + \mbox{Q}_1\,b +  \mbox{Q}_2\,b$}\\ | 
         | 
  1520 \bl{$\mbox{Q}_1$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a$}\\ | 
         | 
  1521 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_1\,a + \mbox{Q}_2\,a$}\\ | 
         | 
  1522 \end{tabular} | 
         | 
  1523 \end{center} | 
         | 
  1524   | 
         | 
  1525   | 
         | 
  1526 Arden's Lemma:  | 
         | 
  1527 \begin{center} | 
         | 
  1528 If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$} | 
         | 
  1529 \end{center} | 
         | 
  1530   | 
         | 
  1531 \only<2-6>{\small | 
         | 
  1532 \begin{textblock}{6}(1,0.8) | 
         | 
  1533 \begin{bubble}[6.7cm] | 
         | 
  1534 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} | 
         | 
  1535 \multicolumn{3}{@{}l}{substitute \bl{$\mbox{Q}_1$} into \bl{$\mbox{Q}_0$} \& \bl{$\mbox{Q}_2$}:}\\     | 
         | 
  1536 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\ONE + \mbox{Q}_0\,b + \mbox{Q}_0\,a\,b +  \mbox{Q}_2\,b$}\\ | 
         | 
  1537 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a + \mbox{Q}_2\,a$} | 
         | 
  1538 \end{tabular} | 
         | 
  1539 \end{bubble} | 
         | 
  1540 \end{textblock}} | 
         | 
  1541   | 
         | 
  1542 \only<3-6>{\small | 
         | 
  1543 \begin{textblock}{6}(2,4.15) | 
         | 
  1544 \begin{bubble}[6.7cm] | 
         | 
  1545 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} | 
         | 
  1546 \multicolumn{3}{@{}l}{simplifying \bl{$\mbox{Q}_0$}:}\\     | 
         | 
  1547 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\ONE + \mbox{Q}_0\,(b + a\,b) + \mbox{Q}_2\,b$}\\ | 
         | 
  1548 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a + \mbox{Q}_2\,a$} | 
         | 
  1549 \end{tabular} | 
         | 
  1550 \end{bubble} | 
         | 
  1551 \end{textblock}} | 
         | 
  1552   | 
         | 
  1553 \only<4-6>{\small | 
         | 
  1554 \begin{textblock}{6}(3,7.55) | 
         | 
  1555 \begin{bubble}[6.7cm] | 
         | 
  1556 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} | 
         | 
  1557   \multicolumn{3}{@{}l}{Arden for \bl{$\mbox{Q}_2$}:}\\     | 
         | 
  1558 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\ONE + \mbox{Q}_0\,(b + a\,b) + \mbox{Q}_2\,b$}\\ | 
         | 
  1559 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a\,(a^*)$} | 
         | 
  1560 \end{tabular} | 
         | 
  1561 \end{bubble} | 
         | 
  1562 \end{textblock}} | 
         | 
  1563   | 
         | 
  1564 \only<5-6>{\small | 
         | 
  1565 \begin{textblock}{6}(4,10.9) | 
         | 
  1566 \begin{bubble}[7.5cm] | 
         | 
  1567 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} | 
         | 
  1568   \multicolumn{3}{@{}l}{Substitute \bl{$\mbox{Q}_2$} and simplify:}\\     | 
         | 
  1569 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\ONE + \mbox{Q}_0\,(b + a\,b + a\,a\,(a^*)\,b)$}\\ | 
         | 
  1570 \end{tabular} | 
         | 
  1571 \end{bubble} | 
         | 
  1572 \end{textblock}} | 
         | 
  1573   | 
         | 
  1574 \only<6>{\small | 
         | 
  1575 \begin{textblock}{6}(5,13.4) | 
         | 
  1576 \begin{bubble}[7.5cm] | 
         | 
  1577 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} | 
         | 
  1578   \multicolumn{3}{@{}l}{Arden again for \bl{$\mbox{Q}_0$}:}\\     | 
         | 
  1579 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*$}\\ | 
         | 
  1580 \end{tabular} | 
         | 
  1581 \end{bubble} | 
         | 
  1582 \end{textblock}} | 
         | 
  1583   | 
         | 
  1584   | 
         | 
  1585 \only<7->{\small | 
         | 
  1586 \begin{textblock}{6}(6,11.5) | 
         | 
  1587 \begin{bubble}[6.7cm] | 
         | 
  1588 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} | 
         | 
  1589 \multicolumn{3}{@{}l}{Finally:}\\     | 
         | 
  1590 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*$}\\ | 
         | 
  1591 \bl{$\mbox{Q}_1$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*\,a$}\\ | 
         | 
  1592 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*\,a\,a\,(a^*)$}\\ | 
         | 
  1593 \end{tabular} | 
         | 
  1594 \end{bubble} | 
         | 
  1595 \end{textblock}} | 
         | 
  1596   | 
         | 
  1597 \end{frame} | 
         | 
  1598 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
  1599   | 
         | 
  1600 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
  1495 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
  1601 \begin{frame}[c] | 
  1496 \begin{frame}[c] | 
  1602 \frametitle{Regexps and Automata} | 
  1497 \frametitle{Regexps and Automata} | 
  1603   | 
  1498   | 
  1604 \begin{center} | 
  1499 \begin{center} |