| 
     1 // Parser Combinators: Simple Version  | 
         | 
     2 //====================================  | 
         | 
     3   | 
         | 
     4 /*   | 
         | 
     5   Note, in the lectures I did not show the implicit type constraint  | 
         | 
     6   I : IsSeq, which means that the input type 'I' needs to be  | 
         | 
     7   a sequence.   | 
         | 
     8 */  | 
         | 
     9   | 
         | 
    10 type IsSeq[A] = A => Seq[_]  | 
         | 
    11   | 
         | 
    12 abstract class Parser[I : IsSeq, T]{ | 
         | 
    13   def parse(in: I): Set[(T, I)]  | 
         | 
    14   | 
         | 
    15   def parse_all(in: I) : Set[T] =  | 
         | 
    16     for ((hd, tl) <- parse(in);   | 
         | 
    17         if tl.isEmpty) yield hd  | 
         | 
    18 }  | 
         | 
    19   | 
         | 
    20 // parser combinators  | 
         | 
    21   | 
         | 
    22 // sequence parser  | 
         | 
    23 class SeqParser[I : IsSeq, T, S](p: => Parser[I, T],   | 
         | 
    24                                  q: => Parser[I, S]) extends Parser[I, (T, S)] { | 
         | 
    25   def parse(in: I) =   | 
         | 
    26     for ((hd1, tl1) <- p.parse(in);   | 
         | 
    27          (hd2, tl2) <- q.parse(tl1)) yield ((hd1, hd2), tl2)  | 
         | 
    28 }  | 
         | 
    29   | 
         | 
    30 // alternative parser  | 
         | 
    31 class AltParser[I : IsSeq, T](p: => Parser[I, T],   | 
         | 
    32                               q: => Parser[I, T]) extends Parser[I, T] { | 
         | 
    33   def parse(in: I) = p.parse(in) ++ q.parse(in)     | 
         | 
    34 }  | 
         | 
    35   | 
         | 
    36 // parser map  | 
         | 
    37 class MapParser[I : IsSeq, T, S](p: => Parser[I, T],   | 
         | 
    38                                  f: T => S) extends Parser[I, S] { | 
         | 
    39   def parse(in: I) = for ((hd, tl) <- p.parse(in)) yield (f(hd), tl)  | 
         | 
    40 }  | 
         | 
    41   | 
         | 
    42 // an example of an atomic parser for characters  | 
         | 
    43 case class CharParser(c: Char) extends Parser[String, Char] { | 
         | 
    44   def parse(in: String) =   | 
         | 
    45     if (in != "" && in.head == c) Set((c, in.tail)) else Set()  | 
         | 
    46 }  | 
         | 
    47   | 
         | 
    48 // an atomic parser for parsing strings according to a regex  | 
         | 
    49 import scala.util.matching.Regex  | 
         | 
    50   | 
         | 
    51 case class RegexParser(reg: Regex) extends Parser[String, String] { | 
         | 
    52   def parse(in: String) = reg.findPrefixMatchOf(in) match { | 
         | 
    53     case None => Set()  | 
         | 
    54     case Some(m) => Set((m.matched, m.after.toString))    | 
         | 
    55   }  | 
         | 
    56 }  | 
         | 
    57   | 
         | 
    58 // atomic parsers for numbers and "verbatim" strings   | 
         | 
    59 val NumParser = RegexParser("[0-9]+".r) | 
         | 
    60 def StrParser(s: String) = RegexParser(Regex.quote(s).r)  | 
         | 
    61   | 
         | 
    62 // NumParserInt transforms a "string integer" into a propper Int  | 
         | 
    63 // (needs "new" because MapParser is not a case class)  | 
         | 
    64   | 
         | 
    65 val NumParserInt = new MapParser(NumParser, (s: String) => s.toInt)  | 
         | 
    66   | 
         | 
    67   | 
         | 
    68 // the following string interpolation allows us to write   | 
         | 
    69 // StrParser(_some_string_) more conveniently as   | 
         | 
    70 //  | 
         | 
    71 // p"<_some_string_>"   | 
         | 
    72   | 
         | 
    73 implicit def parser_interpolation(sc: StringContext) = new { | 
         | 
    74   def p(args: Any*) = StrParser(sc.s(args:_*))  | 
         | 
    75 }  | 
         | 
    76   | 
         | 
    77 // more convenient syntax for parser combinators  | 
         | 
    78 implicit def ParserOps[I : IsSeq, T](p: Parser[I, T]) = new { | 
         | 
    79   def ||(q : => Parser[I, T]) = new AltParser[I, T](p, q)  | 
         | 
    80   def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q)  | 
         | 
    81   def map[S](f: => T => S) = new MapParser[I, T, S](p, f)  | 
         | 
    82 }  | 
         | 
    83   | 
         | 
    84 // these implicits allow us to use an infix notation for  | 
         | 
    85 // sequences and alternatives; we also can write the usual  | 
         | 
    86 // map for a MapParser  | 
         | 
    87   | 
         | 
    88   | 
         | 
    89 // with this NumParserInt can now be written more conveniently  | 
         | 
    90 // as:  | 
         | 
    91   | 
         | 
    92 val NumParserInt2 = NumParser.map(s => s.toInt)  | 
         | 
    93   | 
         | 
    94   | 
         | 
    95 // A parser for palindromes (just returns them as string)  | 
         | 
    96 lazy val Pal : Parser[String, String] = { | 
         | 
    97   (p"a" ~ Pal ~ p"a").map{ case ((x, y), z) => s"$x$y$z" } ||  | 
         | 
    98   (p"b" ~ Pal ~ p"b").map{ case ((x, y), z) => s"$x$y$z" } ||  | 
         | 
    99   p"a" || p"b" || p""  | 
         | 
   100 }    | 
         | 
   101   | 
         | 
   102 // examples  | 
         | 
   103 Pal.parse_all("abaaaba") | 
         | 
   104 Pal.parse("abaaaba") | 
         | 
   105   | 
         | 
   106 println("Palindrome: " + Pal.parse_all("abaaaba")) | 
         | 
   107   | 
         | 
   108 // A parser for wellnested parentheses (transforms '(' -> '{' , ')' -> '}' ) | 
         | 
   109 lazy val P : Parser[String, String] =   | 
         | 
   110   (p"(" ~ P ~ p")" ~ P).map{ case (((_, x), _), y) => "{" + x + "}" + y } || p"" | 
         | 
   111   | 
         | 
   112 println(P.parse_all("(((()()))())")) | 
         | 
   113 println(P.parse_all("(((()()))()))")) | 
         | 
   114 println(P.parse_all(")(")) | 
         | 
   115 println(P.parse_all("()")) | 
         | 
   116   | 
         | 
   117 // A parser for arithmetic expressions (Terms and Factors)  | 
         | 
   118   | 
         | 
   119 lazy val E: Parser[String, Int] =   | 
         | 
   120   (T ~ p"+" ~ E).map{ case ((x, _), z) => x + z } || | 
         | 
   121   (T ~ p"-" ~ E).map{ case ((x, _), z) => x - z } || T  | 
         | 
   122 lazy val T: Parser[String, Int] =   | 
         | 
   123   (F ~ p"*" ~ T).map{ case ((x, _), z) => x * z } || F | 
         | 
   124 lazy val F: Parser[String, Int] =   | 
         | 
   125   (p"(" ~ E ~ p")").map{ case ((_, y), _) => y } || NumParserInt | 
         | 
   126   | 
         | 
   127 /* same parser but producing a string  | 
         | 
   128 lazy val E: Parser[String, String] =   | 
         | 
   129   (T ~ "+" ~ E).map{ case x ~ y ~ z => "(" + x + ")+(" + z + ")"} || T  | 
         | 
   130 lazy val T: Parser[String, String] =   | 
         | 
   131   (F ~ "*" ~ T).map{ case x ~ y ~ z => "(" + x + ")*("+ z + ")"} || F | 
         | 
   132 lazy val F: Parser[String, String] =   | 
         | 
   133   ("(" ~ E ~ ")").map{ case x ~ y ~ z => y } || NumParser | 
         | 
   134 */  | 
         | 
   135   | 
         | 
   136 println(E.parse_all("1+3+4")) | 
         | 
   137 println(E.parse("1+3+4")) | 
         | 
   138 println(E.parse_all("4*2+3")) | 
         | 
   139 println(E.parse_all("4*(2+3)")) | 
         | 
   140 println(E.parse_all("(4)*((2+3))")) | 
         | 
   141 println(E.parse_all("4/2+3")) | 
         | 
   142 println(E.parse("1 + 2 * 3")) | 
         | 
   143 println(E.parse_all("(1+2)+3")) | 
         | 
   144 println(E.parse_all("1+2+3"))   | 
         | 
   145   | 
         | 
   146   | 
         | 
   147 // with parser combinators (and other parsing algorithms)  | 
         | 
   148 // no left-recursion is allowed, otherwise the will loop  | 
         | 
   149   | 
         | 
   150 lazy val EL: Parser[String, Int] =   | 
         | 
   151   ((EL ~ p"+" ~ EL).map{ case ((x, y), z) => x + z} ||  | 
         | 
   152    (EL ~ p"*" ~ EL).map{ case ((x, y), z) => x * z} || | 
         | 
   153    (p"(" ~ EL ~ p")").map{ case ((x, y), z) => y} || | 
         | 
   154    NumParserInt)  | 
         | 
   155   | 
         | 
   156 // this will run forever:  | 
         | 
   157 //println(EL.parse_all("1+2+3")) | 
         | 
   158   | 
         | 
   159   | 
         | 
   160 // non-ambiguous vs ambiguous grammars  | 
         | 
   161   | 
         | 
   162 // ambiguous  | 
         | 
   163 lazy val S : Parser[String, String] =  | 
         | 
   164   (p"1" ~ S ~ S).map{ case ((x, y), z) => x + y + z } || p"" | 
         | 
   165   | 
         | 
   166 println(time(S.parse("1" * 10))) | 
         | 
   167 println(time(S.parse_all("1" * 10))) | 
         | 
   168   | 
         | 
   169 // non-ambiguous  | 
         | 
   170 lazy val U : Parser[String, String] =  | 
         | 
   171   (p"1" ~ U).map{ case (x, y) => x + y } || p"" | 
         | 
   172   | 
         | 
   173 println(time(U.parse("1" * 10))) | 
         | 
   174 println(time(U.parse_all("1" * 10))) | 
         | 
   175 println(U.parse("1" * 25)) | 
         | 
   176   | 
         | 
   177 U.parse("11") | 
         | 
   178 U.parse("11111") | 
         | 
   179 U.parse("11011") | 
         | 
   180   | 
         | 
   181 U.parse_all("1" * 100) | 
         | 
   182 U.parse_all("1" * 100 + "0") | 
         | 
   183   | 
         | 
   184 // you can see the difference in second example  | 
         | 
   185 //S.parse_all("1" * 100)         // succeeds | 
         | 
   186 //S.parse_all("1" * 100 + "0")   // fails | 
         | 
   187   | 
         | 
   188   | 
         | 
   189 // A variant which counts how many 1s are parsed  | 
         | 
   190 lazy val UCount : Parser[String, Int] =  | 
         | 
   191   (p"1" ~ UCount).map[Int]{ case (_, y) => y + 1 } || p"".map[Int]{ _ => 0 } | 
         | 
   192   | 
         | 
   193 println(UCount.parse("11111")) | 
         | 
   194 println(UCount.parse_all("11111")) | 
         | 
   195   | 
         | 
   196 // Two single character parsers  | 
         | 
   197 lazy val One : Parser[String, String] = p"a"  | 
         | 
   198 lazy val Two : Parser[String, String] = p"b"  | 
         | 
   199   | 
         | 
   200 One.parse("a") | 
         | 
   201 One.parse("aaa") | 
         | 
   202   | 
         | 
   203 // note how the pairs nest to the left with sequence parsers  | 
         | 
   204 (One ~ One).parse("aaa") | 
         | 
   205 (One ~ One ~ One).parse("aaa") | 
         | 
   206 (One ~ One ~ One ~ One).parse("aaaa") | 
         | 
   207   | 
         | 
   208 (One || Two).parse("aaa") | 
         | 
   209   | 
         | 
   210   | 
         | 
   211   | 
         | 
   212 // a problem with the arithmetic expression parser: it   | 
         | 
   213 // gets vert slow with deeply nested parentheses  | 
         | 
   214   | 
         | 
   215 println("Runtime problem") | 
         | 
   216 println(E.parse("1")) | 
         | 
   217 println(E.parse("(1)")) | 
         | 
   218 println(E.parse("((1))")) | 
         | 
   219 //println(E.parse("(((1)))")) | 
         | 
   220 //println(E.parse("((((1))))")) | 
         | 
   221 //println(E.parse("((((((1))))))")) | 
         | 
   222 //println(E.parse("(((((((1)))))))")) | 
         | 
   223 //println(E.parse("((((((((1)))))))")) |