1 // A Simple Lexer according to Sulzmann & Lu  | 
     1 // A simple lexer inspired by work of Sulzmann & Lu  | 
         | 
     2 //==================================================  | 
         | 
     3   | 
     2   | 
     4   | 
     3 import scala.language.implicitConversions      | 
     5 import scala.language.implicitConversions      | 
     4 import scala.language.reflectiveCalls  | 
     6 import scala.language.reflectiveCalls  | 
     5   | 
     7   | 
         | 
     8 // regular expressions including records  | 
     6 abstract class Rexp   | 
     9 abstract class Rexp   | 
     7 case object ZERO extends Rexp  | 
    10 case object ZERO extends Rexp  | 
     8 case object ONE extends Rexp  | 
    11 case object ONE extends Rexp  | 
     9 case class CHAR(c: Char) extends Rexp  | 
    12 case class CHAR(c: Char) extends Rexp  | 
    10 case class ALT(r1: Rexp, r2: Rexp) extends Rexp   | 
    13 case class ALT(r1: Rexp, r2: Rexp) extends Rexp   | 
    11 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp   | 
    14 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp   | 
    12 case class STAR(r: Rexp) extends Rexp   | 
    15 case class STAR(r: Rexp) extends Rexp   | 
    13 case class RECD(x: String, r: Rexp) extends Rexp  | 
    16 case class RECD(x: String, r: Rexp) extends Rexp  | 
    14      | 
    17     | 
         | 
    18 // values    | 
    15 abstract class Val  | 
    19 abstract class Val  | 
    16 case object Empty extends Val  | 
    20 case object Empty extends Val  | 
    17 case class Chr(c: Char) extends Val  | 
    21 case class Chr(c: Char) extends Val  | 
    18 case class Sequ(v1: Val, v2: Val) extends Val  | 
    22 case class Sequ(v1: Val, v2: Val) extends Val  | 
    19 case class Left(v: Val) extends Val  | 
    23 case class Left(v: Val) extends Val  | 
    43   def ~ (r: Rexp) = SEQ(s, r)  | 
    47   def ~ (r: Rexp) = SEQ(s, r)  | 
    44   def ~ (r: String) = SEQ(s, r)  | 
    48   def ~ (r: String) = SEQ(s, r)  | 
    45   def $ (r: Rexp) = RECD(s, r)  | 
    49   def $ (r: Rexp) = RECD(s, r)  | 
    46 }  | 
    50 }  | 
    47   | 
    51   | 
    48 // A test for more conveninet syntax  | 
    52 def nullable(r: Rexp) : Boolean = r match { | 
    49 val re : Rexp = ("ab" | "a") ~ ("b" | ONE) | 
         | 
    50   | 
         | 
    51 // the nullable function: tests whether the regular   | 
         | 
    52 // expression can recognise the empty string  | 
         | 
    53 def nullable (r: Rexp) : Boolean = r match { | 
         | 
    54   case ZERO => false  | 
    53   case ZERO => false  | 
    55   case ONE => true  | 
    54   case ONE => true  | 
    56   case CHAR(_) => false  | 
    55   case CHAR(_) => false  | 
    57   case ALT(r1, r2) => nullable(r1) || nullable(r2)  | 
    56   case ALT(r1, r2) => nullable(r1) || nullable(r2)  | 
    58   case SEQ(r1, r2) => nullable(r1) && nullable(r2)  | 
    57   case SEQ(r1, r2) => nullable(r1) && nullable(r2)  | 
    59   case STAR(_) => true  | 
    58   case STAR(_) => true  | 
    60   case RECD(_, r1) => nullable(r1)  | 
    59   case RECD(_, r1) => nullable(r1)  | 
    61 }  | 
    60 }  | 
    62   | 
    61   | 
    63 // the derivative of a regular expression w.r.t. a character  | 
    62 def der(c: Char, r: Rexp) : Rexp = r match { | 
    64 def der (c: Char, r: Rexp) : Rexp = r match { | 
         | 
    65   case ZERO => ZERO  | 
    63   case ZERO => ZERO  | 
    66   case ONE => ZERO  | 
    64   case ONE => ZERO  | 
    67   case CHAR(d) => if (c == d) ONE else ZERO  | 
    65   case CHAR(d) => if (c == d) ONE else ZERO  | 
    68   case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))  | 
    66   case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))  | 
    69   case SEQ(r1, r2) =>   | 
    67   case SEQ(r1, r2) =>   | 
    88   case Sequ(v1, v2) => flatten(v1) + flatten(v2)  | 
    81   case Sequ(v1, v2) => flatten(v1) + flatten(v2)  | 
    89   case Stars(vs) => vs.map(flatten).mkString  | 
    82   case Stars(vs) => vs.map(flatten).mkString  | 
    90   case Rec(_, v) => flatten(v)  | 
    83   case Rec(_, v) => flatten(v)  | 
    91 }  | 
    84 }  | 
    92   | 
    85   | 
         | 
    86   | 
    93 // extracts an environment from a value;  | 
    87 // extracts an environment from a value;  | 
    94 // used for lexing a string  | 
    88 // used for tokenise a string  | 
    95 def env(v: Val) : List[(String, String)] = v match { | 
    89 def env(v: Val) : List[(String, String)] = v match { | 
    96   case Empty => Nil  | 
    90   case Empty => Nil  | 
    97   case Chr(c) => Nil  | 
    91   case Chr(c) => Nil  | 
    98   case Left(v) => env(v)  | 
    92   case Left(v) => env(v)  | 
    99   case Right(v) => env(v)  | 
    93   case Right(v) => env(v)  | 
   100   case Sequ(v1, v2) => env(v1) ::: env(v2)  | 
    94   case Sequ(v1, v2) => env(v1) ::: env(v2)  | 
   101   case Stars(vs) => vs.flatMap(env)  | 
    95   case Stars(vs) => vs.flatMap(env)  | 
   102   case Rec(x, v) => (x, flatten(v))::env(v)  | 
    96   case Rec(x, v) => (x, flatten(v))::env(v)  | 
   103 }  | 
    97 }  | 
   104   | 
    98   | 
   105 // The Injection Part of the Lexer  | 
    99 // The Injection Part of the lexer  | 
   106   | 
   100   | 
   107 // calculates a value for how a nullable regex   | 
         | 
   108 // matches the empty string   | 
         | 
   109 def mkeps(r: Rexp) : Val = r match { | 
   101 def mkeps(r: Rexp) : Val = r match { | 
   110   case ONE => Empty  | 
   102   case ONE => Empty  | 
   111   case ALT(r1, r2) =>   | 
   103   case ALT(r1, r2) =>   | 
   112     if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))  | 
   104     if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))  | 
   113   case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))  | 
   105   case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))  | 
   114   case STAR(r) => Stars(Nil)  | 
   106   case STAR(r) => Stars(Nil)  | 
   115   case RECD(x, r) => Rec(x, mkeps(r))  | 
   107   case RECD(x, r) => Rec(x, mkeps(r))  | 
   116 }  | 
   108 }  | 
   117   | 
   109   | 
   118 // injects back a character into a value  | 
         | 
   119 def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match { | 
   110 def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match { | 
   120   case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)  | 
   111   case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)  | 
   121   case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)  | 
   112   case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)  | 
   122   case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)  | 
   113   case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)  | 
   123   case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))  | 
   114   case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))  | 
   125   case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2))  | 
   116   case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2))  | 
   126   case (CHAR(d), Empty) => Chr(c)   | 
   117   case (CHAR(d), Empty) => Chr(c)   | 
   127   case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))  | 
   118   case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))  | 
   128 }  | 
   119 }  | 
   129   | 
   120   | 
   130 // the main lexing function (produces a value)  | 
         | 
   131 def lex(r: Rexp, s: List[Char]) : Val = s match { | 
         | 
   132   case Nil => if (nullable(r)) mkeps(r)   | 
         | 
   133               else throw new Exception("Not matched") | 
         | 
   134   case c::cs => inj(r, c, lex(der(c, r), cs))  | 
         | 
   135 }  | 
         | 
   136   | 
         | 
   137 def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)  | 
         | 
   138   | 
         | 
   139 // a simple test for extracting an environment  | 
         | 
   140 val re1 : Rexp = ("first" $ ("a" | "ab")) ~ ("second" $ ("b" | ONE)) | 
         | 
   141 env(lexing(re1, "ab"))  | 
         | 
   142   | 
         | 
   143 // some "rectification" functions for simplification  | 
   121 // some "rectification" functions for simplification  | 
   144 def F_ID(v: Val): Val = v  | 
   122 def F_ID(v: Val): Val = v  | 
   145 def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))  | 
   123 def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))  | 
   146 def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))  | 
   124 def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))  | 
   147 def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { | 
   125 def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { | 
   191   case r => (r, F_ID)  | 
   167   case r => (r, F_ID)  | 
   192 }  | 
   168 }  | 
   193   | 
   169   | 
   194 // lexing functions including simplification  | 
   170 // lexing functions including simplification  | 
   195 def lex_simp(r: Rexp, s: List[Char]) : Val = s match { | 
   171 def lex_simp(r: Rexp, s: List[Char]) : Val = s match { | 
   196   case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched") | 
   172   case Nil => if (nullable(r)) mkeps(r) else   | 
         | 
   173     { throw new Exception("lexing error") }  | 
   197   case c::cs => { | 
   174   case c::cs => { | 
   198     val (r_simp, f_simp) = simp(der(c, r))  | 
   175     val (r_simp, f_simp) = simp(der(c, r))  | 
   199     inj(r, c, f_simp(lex_simp(r_simp, cs)))  | 
   176     inj(r, c, f_simp(lex_simp(r_simp, cs)))  | 
   200   }  | 
   177   }  | 
   201 }  | 
   178 }  | 
   202   | 
   179   | 
   203 def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)  | 
   180 def lexing_simp(r: Rexp, s: String) =   | 
   204   | 
   181   env(lex_simp(r, s.toList))  | 
   205 lexing_simp(("a" | "ab") ~ ("b" | ""), "ab") | 
   182   | 
   206   | 
   183   | 
   207 // The Lexing Rules for a Small While Language  | 
   184 // The Lexing Rules for the Fun Language  | 
   208   | 
   185   | 
   209 def PLUS(r: Rexp) = r ~ r.%  | 
   186 def PLUS(r: Rexp) = r ~ r.%  | 
   210   | 
   187   | 
   211 val SYM = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"  | 
   188 def Range(s : List[Char]) : Rexp = s match { | 
   212 val DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"  | 
   189   case Nil => ZERO  | 
         | 
   190   case c::Nil => CHAR(c)  | 
         | 
   191   case c::s => ALT(CHAR(c), Range(s))  | 
         | 
   192 }  | 
         | 
   193 def RANGE(s: String) = Range(s.toList)  | 
         | 
   194   | 
         | 
   195 val SYM = RANGE("ABCDEFGHIJKLMNOPQRSTUVXYZabcdefghijklmnopqrstuvwxyz_") | 
         | 
   196 val DIGIT = RANGE("0123456789") | 
   213 val ID = SYM ~ (SYM | DIGIT).%   | 
   197 val ID = SYM ~ (SYM | DIGIT).%   | 
   214 val NUM = PLUS(DIGIT)  | 
   198 val NUM = PLUS(DIGIT)  | 
   215 val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"  | 
   199 val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write"   | 
   216 val SEMI: Rexp = ";"  | 
   200 val SEMI: Rexp = ";"  | 
   217 val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"  | 
   201 val OP: Rexp = ":=" | "=" | "-" | "+" | "*" | "!=" | "<" | ">"  | 
   218 val WHITESPACE = PLUS(" " | "\n" | "\t") | 
   202 val WHITESPACE = PLUS(" " | "\n" | "\t") | 
   219 val RPAREN: Rexp = ")"  | 
   203 val RPAREN: Rexp = "{" | 
   220 val LPAREN: Rexp = "(" | 
   204 val LPAREN: Rexp = "}"  | 
   221 val BEGIN: Rexp = "{" | 
         | 
   222 val END: Rexp = "}"  | 
         | 
   223 val STRING: Rexp = "\"" ~ SYM.% ~ "\""  | 
   205 val STRING: Rexp = "\"" ~ SYM.% ~ "\""  | 
   224   | 
   206   | 
   225   | 
   207   | 
   226 val WHILE_REGS = (("k" $ KEYWORD) |  | 
   208 val WHILE_REGS = (("k" $ KEYWORD) |  | 
   227                   ("i" $ ID) |  | 
   209                   ("i" $ ID) |  | 
   228                   ("o" $ OP) |  | 
   210                   ("o" $ OP) |  | 
   229                   ("n" $ NUM) |  | 
   211                   ("n" $ NUM) |  | 
   230                   ("s" $ SEMI) |  | 
   212                   ("s" $ SEMI) |  | 
   231                   ("str" $ STRING) | | 
   213                   ("str" $ STRING) | | 
   232                   ("p" $ (LPAREN | RPAREN)) |  | 
   214                   ("p" $ (LPAREN | RPAREN)) |  | 
   233                   ("b" $ (BEGIN | END)) |  | 
         | 
   234                   ("w" $ WHITESPACE)).% | 
   215                   ("w" $ WHITESPACE)).% | 
   235   | 
         | 
   236 //   Testing  | 
         | 
   237 //============  | 
         | 
   238   | 
         | 
   239 def time[T](code: => T) = { | 
         | 
   240   val start = System.nanoTime()  | 
         | 
   241   val result = code  | 
         | 
   242   val end = System.nanoTime()  | 
         | 
   243   println((end - start)/1.0e9)  | 
         | 
   244   result  | 
         | 
   245 }  | 
         | 
   246   | 
         | 
   247 val r1 = ("a" | "ab") ~ ("bcd" | "c") | 
         | 
   248 println(lexing(r1, "abcd"))  | 
         | 
   249   | 
         | 
   250 val r2 = ("" | "a") ~ ("ab" | "b") | 
         | 
   251 println(lexing(r2, "ab"))  | 
         | 
   252   | 
   216   | 
   253   | 
   217   | 
   254 // Two Simple While Tests  | 
   218 // Two Simple While Tests  | 
   255 //========================  | 
   219 //========================  | 
   256 println("prog0 test") | 
   220   | 
   257   | 
   221 println("test: read n") | 
   258 val prog0 = """read if"""  | 
   222   | 
   259 println(env(lexing_simp(WHILE_REGS, prog0)))  | 
   223 val prog0 = """read n"""  | 
   260   | 
   224 println(lexing_simp(WHILE_REGS, prog0))  | 
   261 println("prog1 test") | 
   225   | 
   262   | 
   226 println("test: read  n; write n ") | 
   263 val prog1 = """read  n; write (n)"""  | 
   227   | 
   264 println(env(lexing_simp(WHILE_REGS, prog1)))  | 
   228 val prog1 = """read  n; write n"""  | 
   265   | 
   229 println(lexing_simp(WHILE_REGS, prog1))  | 
   266   | 
   230   | 
   267 // Bigger Test  | 
   231   | 
   268 //=============  | 
   232 // Bigger Tests  | 
         | 
   233 //==============  | 
         | 
   234   | 
         | 
   235 // escapes strings and prints them out as "", "\n" and so on  | 
         | 
   236 def esc(raw: String): String = { | 
         | 
   237   import scala.reflect.runtime.universe._  | 
         | 
   238   Literal(Constant(raw)).toString  | 
         | 
   239 }  | 
         | 
   240   | 
         | 
   241 def escape(tks: List[(String, String)]) =  | 
         | 
   242   tks.map{ case (s1, s2) => (s1, esc(s2))} | 
   269   | 
   243   | 
   270 val prog2 = """  | 
   244 val prog2 = """  | 
   271 write "fib";  | 
   245 write "Fib";  | 
   272 read n;  | 
   246 read n;  | 
   273 minus1 := 0;  | 
   247 minus1 := 0;  | 
   274 minus2 := 1;  | 
   248 minus2 := 1;  | 
   275 while n > 0 do { | 
   249 while n > 0 do { | 
   276   temp := minus2;  | 
   250   temp := minus2;  | 
   277   minus2 := minus1 + minus2;  | 
   251   minus2 := minus1 + minus2;  | 
   278   minus1 := temp;  | 
   252   minus1 := temp;  | 
   279   n := n - 1  | 
   253   n := n - 1  | 
   280 };  | 
   254 };  | 
   281 write "result";  | 
         | 
   282 write minus2  | 
         | 
   283 """  | 
         | 
   284   | 
         | 
   285 println("Tokens") | 
         | 
   286 println(env(lexing_simp(WHILE_REGS, prog2)))  | 
         | 
   287 println(env(lexing_simp(WHILE_REGS, prog2)).filterNot{_._1 == "w"}.mkString("\n")) | 
         | 
   288   | 
         | 
   289 // some more timing tests with  | 
         | 
   290 // i copies of the program  | 
         | 
   291   | 
         | 
   292 for (i <- 0 to 20 by 10) { | 
         | 
   293   print(i.toString + ":  ")  | 
         | 
   294   time(lexing_simp(WHILE_REGS, prog2 * i))  | 
         | 
   295 }  | 
         | 
   296   | 
         | 
   297   | 
         | 
   298 val fib = """  | 
         | 
   299 write "Fib";  | 
         | 
   300 read n;  | 
         | 
   301 minus1 := 0;  | 
         | 
   302 minus2 := 1;  | 
         | 
   303 while n > 0 do { | 
         | 
   304 temp := minus2;  | 
         | 
   305 minus2 := minus1 + minus2;  | 
         | 
   306 minus1 := temp;  | 
         | 
   307 n := n - 1  | 
         | 
   308 };  | 
         | 
   309 write "Result";  | 
   255 write "Result";  | 
   310 write minus2  | 
   256 write minus2  | 
   311 """  | 
   257 """  | 
   312   | 
   258   | 
   313 println(env(lexing_simp(WHILE_REGS, prog2)).filterNot{_._1 == "w"}) | 
   259 println("lexing Fib") | 
         | 
   260 println(escape(lexing_simp(WHILE_REGS, prog2)).mkString("\n")) | 
         | 
   261   | 
         | 
   262   | 
         | 
   263   | 
         | 
   264 val prog3 = """  | 
         | 
   265 start := 1000;  | 
         | 
   266 x := start;  | 
         | 
   267 y := start;  | 
         | 
   268 z := start;  | 
         | 
   269 while 0 < x do { | 
         | 
   270  while 0 < y do { | 
         | 
   271   while 0 < z do { | 
         | 
   272     z := z - 1  | 
         | 
   273   };  | 
         | 
   274   z := start;  | 
         | 
   275   y := y - 1  | 
         | 
   276  };       | 
         | 
   277  y := start;  | 
         | 
   278  x := x - 1  | 
         | 
   279 }  | 
         | 
   280 """  | 
         | 
   281   | 
         | 
   282 println("lexing Loops") | 
         | 
   283 println(escape(lexing_simp(WHILE_REGS, prog3)).mkString("\n")) | 
         | 
   284   |