slides/slides12.tex
changeset 392 2d0a59127694
child 458 896a5f91838d
equal deleted inserted replaced
391:f352cb238c32 392:2d0a59127694
       
     1 \documentclass[dvipsnames,14pt,t]{beamer}
       
     2 \usepackage{../slides}
       
     3 \usepackage{../graphics}
       
     4 \usepackage{../langs}
       
     5 \usepackage{../data}
       
     6 \usepackage{../grammar}
       
     7 
       
     8 % beamer stuff 
       
     9 \renewcommand{\slidecaption}{AFL, King's College London}
       
    10 \newcommand{\bl}[1]{\textcolor{blue}{#1}}       
       
    11 
       
    12 
       
    13 \begin{document}
       
    14 
       
    15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    16 \begin{frame}[t]
       
    17 \frametitle{%
       
    18   \begin{tabular}{@ {}c@ {}}
       
    19   \\[-3mm]
       
    20   \LARGE Automata and \\[-2mm] 
       
    21   \LARGE Formal Languages\\[3mm] 
       
    22   \end{tabular}}
       
    23 
       
    24   \normalsize
       
    25   \begin{center}
       
    26   \begin{tabular}{ll}
       
    27   Email:  & christian.urban at kcl.ac.uk\\
       
    28   Office: & S1.27 (1st floor Strand Building)\\
       
    29   Slides: & KEATS (also home work is there)\\
       
    30   \end{tabular}
       
    31   \end{center}
       
    32 
       
    33 \end{frame}
       
    34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
    35 
       
    36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    37 \begin{frame}[c]
       
    38 
       
    39 \Large\bf There are more problems, than there are
       
    40 programs.\bigskip\bigskip\pause\\
       
    41 
       
    42 There must be a problem for which there is no program.
       
    43 \end{frame}
       
    44 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
    45 
       
    46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    47 \begin{frame}[c]
       
    48 \frametitle{Subsets}
       
    49 
       
    50 \Large
       
    51 If \bl{$A \subseteq B$} then \bl{$A$} has fewer elements
       
    52 than \bl{$B$}\bigskip\bigskip
       
    53 
       
    54 \Large
       
    55 \bl{$A \subseteq B$} and \bl{$B \subseteq A$}\bigskip
       
    56 
       
    57 then \bl{$A = B$}
       
    58 \end{frame}
       
    59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
    60 
       
    61 
       
    62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    63   \begin{frame}[c]
       
    64   
       
    65   \begin{center}
       
    66   \begin{tikzpicture}
       
    67   
       
    68   \draw (-4,2.5) node [scale=2.5] (X) 
       
    69     {\begin{tabular}{l}
       
    70      $\{$  
       
    71      \!\includegraphics[scale=0.02]{../pics/o1.jpg},
       
    72      \includegraphics[scale=0.02]{../pics/o2.jpg},
       
    73      \!\includegraphics[scale=0.02]{../pics/o3.jpg},
       
    74      \includegraphics[scale=0.02]{../pics/o4.jpg},
       
    75      \!\includegraphics[scale=0.027]{../pics/o5.jpg}
       
    76      $\}$
       
    77     \end{tabular}};
       
    78     
       
    79     \draw (-5.6,-2.5) node [scale=2.5] (Y) 
       
    80     {\begin{tabular}{l}
       
    81      $\{$  
       
    82      \!\includegraphics[scale=0.059]{../pics/a1.jpg},
       
    83      \includegraphics[scale=0.048]{../pics/a2.jpg},
       
    84      \includegraphics[scale=0.02]{../pics/a3.jpg}
       
    85      $\}$
       
    86     \end{tabular}};
       
    87     
       
    88      \draw (0,1.5) node (X1) {5 elements};
       
    89      \draw (0,-3.5) node (y1) {3 elements};
       
    90   \end{tikzpicture}
       
    91   \end{center}
       
    92 
       
    93   \end{frame}
       
    94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    95 
       
    96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    97   \begin{frame}[c]
       
    98   \frametitle{Newton vs Feynman}
       
    99   
       
   100   \begin{center}
       
   101   \begin{tabular}{cc}
       
   102   \includegraphics[scale=0.2]{../pics/newton.jpg} &
       
   103   \includegraphics[scale=0.2]{../pics/feynman.jpg}\\
       
   104   classical physics & quantum physics
       
   105   \end{tabular}
       
   106   \end{center}
       
   107   \end{frame}
       
   108 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   109 
       
   110 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   111   \begin{frame}[c]
       
   112   \frametitle{The Goal of the Talk}
       
   113  \large
       
   114   \begin{itemize}
       
   115   \item show you that something very unintuitive happens with very large sets	
       
   116   \bigskip\bigskip
       
   117   
       
   118   \item convince you that there are more {\bf problems} than {\bf programs}
       
   119   \end{itemize}	
       
   120   \end{frame}
       
   121 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   122 
       
   123 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   124 \begin{frame}[t]
       
   125 %
       
   126   \begin{center}
       
   127   \begin{tikzpicture}
       
   128  
       
   129   \draw (-5,2.5) node [scale=2.3] (X) 
       
   130     {\begin{tabular}{@ {\hspace{-3mm}}l}
       
   131      \bl{$B$ $=$ $\{$  
       
   132      \!\includegraphics[scale=0.02]{../pics/o1.jpg},
       
   133      \includegraphics[scale=0.02]{../pics/o2.jpg},
       
   134      \!\includegraphics[scale=0.02]{../pics/o3.jpg},
       
   135      \includegraphics[scale=0.02]{../pics/o4.jpg},
       
   136      \!\includegraphics[scale=0.027]{../pics/o5.jpg}
       
   137      $\}$}
       
   138     \end{tabular}};
       
   139     
       
   140     \draw (-6.6,-0.5) node [scale=2.3] (Y) 
       
   141     {\begin{tabular}{@ {\hspace{-3mm}}l}
       
   142      \bl{$A$ $=$ $\{$  
       
   143      \!\includegraphics[scale=0.059]{../pics/a1.jpg},
       
   144      \includegraphics[scale=0.048]{../pics/a2.jpg},
       
   145      \includegraphics[scale=0.02]{../pics/a3.jpg}
       
   146      $\}$}
       
   147      \end{tabular}};
       
   148   
       
   149      \only<1>{\draw (-5, -3) node[scale=2] 
       
   150        {\bl{$|A|$ $=$ $5$}, \bl{$|B|$ $=$ $3$}};}
       
   151      \only<2>{
       
   152        \draw [->, line width=1mm, red] (-7.4, 0.2) -- (-6.1, 2.1);
       
   153        \draw [->, line width=1mm, red] (-5.8, 0.2) -- (-3.1, 2.1);
       
   154        \draw [->, line width=1mm, red] (-4.5, 0.2) -- (-7.6, 2.1);
       
   155        \draw (-5, -3) node[scale=2] {then \bl{$|A|$ $\le$ $|B|$}};
       
   156        }
       
   157     \only<3>{
       
   158        \draw [<-, line width=1mm, red] (-7.5, 0.2) -- (-6.1, 2.1);
       
   159        \draw [<-, line width=1mm, red] (-7.3, 0.2) -- (-3.1, 2.1);
       
   160        \draw [<-, line width=1mm, red] (-6, 0.2) -- (-7.5, 2.1);
       
   161        \draw [<-, line width=1mm, red] (-4.5, 0.2) -- (-4.5, 2.1);
       
   162        \draw [<-, line width=1mm, red] (-4.3, 0.2) -- (-1.3, 2.1);
       
   163        
       
   164        \draw (-5, -3) node[scale=1.5] {\small{}for \bl{$=$}
       
   165         has to be a {\bf one-to-one} mapping};
       
   166        }
       
   167 
       
   168     
       
   169   \end{tikzpicture}
       
   170   \end{center}
       
   171 
       
   172 \end{frame}
       
   173 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   174 
       
   175 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   176 \begin{frame}[c]
       
   177 \frametitle{Cardinality}
       
   178 
       
   179 \Large
       
   180 \bl{$|A|$} $\dn$ ``how many elements''\bigskip\\
       
   181 
       
   182 \bl{$A \subseteq B  \Rightarrow |A| \leq |B|$}\bigskip\\\pause
       
   183 
       
   184 if there is an injective function \bl{$f: A \rightarrow B$} then \bl{$|A| \leq |B|$}\
       
   185 
       
   186 \begin{center}
       
   187 \bl{\large$\forall x y.\; f(x) = f(y) \Rightarrow x = y$}
       
   188 \end{center}
       
   189 \end{frame}
       
   190 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   191 
       
   192 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   193 \begin{frame}[t]
       
   194 
       
   195   \begin{center}
       
   196   \begin{tikzpicture}
       
   197   
       
   198   \draw (-6.6,2.5) node [scale=2.3] (X) 
       
   199     {\begin{tabular}{@ {\hspace{-3mm}}l}
       
   200      $A$ $=$ $\{$  
       
   201      \!\includegraphics[scale=0.02]{../pics/o1.jpg},
       
   202      \includegraphics[scale=0.02]{../pics/o2.jpg},
       
   203      \!\includegraphics[scale=0.02]{../pics/o3.jpg}
       
   204      $\}$
       
   205     \end{tabular}};
       
   206     
       
   207     \draw (-6.6,-0.5) node [scale=2.3] (Y) 
       
   208     {\begin{tabular}{@ {\hspace{-3mm}}l}
       
   209      $B$ $=$ $\{$  
       
   210      \!\includegraphics[scale=0.059]{../pics/a1.jpg},
       
   211      \includegraphics[scale=0.048]{../pics/a2.jpg},
       
   212      \includegraphics[scale=0.02]{../pics/a3.jpg}
       
   213      $\}$
       
   214      \end{tabular}};
       
   215    \onslide<3->{\draw (-7, -3) node[scale=1.5] 
       
   216       {then \bl{$|A|$ \alert{$=$} $|B|$}};}
       
   217      \only<1>{
       
   218        \draw [->, line width=1mm, red] (-7.4, 0.2) -- (-6.1, 2.1);
       
   219        \draw [->, line width=1mm, red] (-5.8, 0.2) -- (-4.3, 2.1);
       
   220        \draw [->, line width=1mm, red] (-4.5, 0.2) -- (-7.6, 2.1);
       
   221      }
       
   222     \only<2->{
       
   223        \draw [<-, line width=1mm, blue] (-7.5, 0.2) -- (-7.5, 2.1);
       
   224        \draw [<-, line width=1mm, blue] (-5.8, 0.2) -- (-4.3, 2.1);
       
   225        \draw [<-, line width=1mm, blue] (-4.5, 0.2) -- (-6.1, 2.1);
       
   226        }
       
   227    
       
   228     
       
   229   \end{tikzpicture}
       
   230   \end{center}
       
   231 
       
   232 \end{frame}
       
   233 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   234 
       
   235 
       
   236 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   237 \begin{frame}[c]
       
   238 \frametitle{Natural Numbers}
       
   239 
       
   240 \Large
       
   241 \bl{$\mathbb{N}$} \bl{$\dn$} \bl{$\{0, 1, 2, 3, .......\}$}\bigskip\pause 
       
   242 
       
   243 \bl{$A$} is \alert{countable} iff \bl{$|A| \leq |\mathbb{N}|$}
       
   244 
       
   245 \end{frame}
       
   246 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   247 
       
   248 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   249 \begin{frame}[c]
       
   250 \frametitle{First Question}
       
   251 
       
   252 \Large
       
   253 \bl{$|\mathbb{N} - \{0\}|   \;\;\;\alert{?}\;\;\;  |\mathbb{N}| $}\bigskip\bigskip 
       
   254 
       
   255 \large
       
   256 \bl{$\geq$} or \bl{$\leq$} or \bl{$=$} ?
       
   257 \bigskip\bigskip\bigskip\pause
       
   258 
       
   259 \bl{$x$ $\mapsto$ $x + 1$},\\  \bl{$|\mathbb{N} - \{0\}|$ $=$  
       
   260 $|\mathbb{N}|$}
       
   261 \end{frame}
       
   262 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   263 
       
   264 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   265 \mode<presentation>{
       
   266 \begin{frame}[c]
       
   267 
       
   268 \Large
       
   269 \bl{$|\mathbb{N} - \{0, 1\}|   \;\;\;\alert{?}\;\;\;  |\mathbb{N}| $}\bigskip\pause 
       
   270 
       
   271 \bl{$|\mathbb{N} - \mathbb{O}|   \;\;\;\alert{?}\;\;\;  |\mathbb{N}| $}\bigskip\bigskip
       
   272 
       
   273 \normalsize
       
   274 \bl{$\mathbb{O}$} $\dn$ odd numbers\quad   \bl{$\{1,3,5......\}$}\\ \pause
       
   275 \bl{$\mathbb{E}$} $\dn$ even numbers\quad   \bl{$\{0,2,4......\}$}\\
       
   276 \end{frame}}
       
   277 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   278 
       
   279 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   280 \mode<presentation>{
       
   281 \begin{frame}[c]
       
   282 
       
   283 \Large
       
   284 \bl{$|\mathbb{N} \cup \mathbb{-N}|   \;\;\;\alert{?}\;\;\;  |\mathbb{N}| $}\bigskip\bigskip
       
   285 
       
   286 
       
   287 \normalsize
       
   288 \bl{$\mathbb{\phantom{-}N}$} $\dn$ positive numbers\quad   \bl{$\{0,1,2,3,......\}$}\\
       
   289 \bl{$\mathbb{-N}$} $\dn$ negative numbers\quad   \bl{$\{0,-1,-2,-3,......\}$}\\
       
   290 \end{frame}}
       
   291 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   292 
       
   293 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   294 \mode<presentation>{
       
   295 \begin{frame}[c]
       
   296 
       
   297 \Large
       
   298 \bl{$A$} is \alert{countable} if there exists an injective \bl{$f : A \rightarrow \mathbb{N}$}\bigskip
       
   299 
       
   300 \bl{$A$} is \alert{uncountable} if there does not exist an injective \bl{$f : A \rightarrow \mathbb{N}$}\bigskip\bigskip 
       
   301 
       
   302 
       
   303 countable:  \bl{$|A| \leq |\mathbb{N}|$}\\
       
   304 uncountable:  \bl{$|A| > |\mathbb{N}|$}\pause\bigskip
       
   305 
       
   306 
       
   307 Does there exist such an \bl{$A$} ?
       
   308 
       
   309 \end{frame}}
       
   310 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   311 
       
   312 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   313   \mode<presentation>{
       
   314   \begin{frame}[c]
       
   315   \frametitle{Hilbert's Hotel}
       
   316 
       
   317   \begin{center}
       
   318  \includegraphics[scale=0.8]{../pics/hilberts_hotel.jpg}
       
   319   \end{center}
       
   320 
       
   321   \begin{itemize}
       
   322   \item \ldots has as many rooms as there are natural numbers
       
   323   \end{itemize}
       
   324 
       
   325   \end{frame}}
       
   326   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   327   
       
   328   
       
   329 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   330 \begin{frame}[t]
       
   331  \frametitle{\begin{tabular}{c}Real Numbers between\\[-2mm] 0 and 1\end{tabular}}
       
   332 
       
   333   \begin{center}
       
   334   \begin{tikzpicture}
       
   335   \draw [fill, color=black!50] (1,4) rectangle (2, 3);
       
   336   \draw [fill, color=black!50] (2,3) rectangle (3, 2);
       
   337   \draw [fill, color=black!50] (3,2) rectangle (4, 1);
       
   338   \draw [fill, color=black!50] (4,1) rectangle (5, 0);
       
   339   \draw (0, 0) grid (8, 5);
       
   340   \draw [line width = 1.mm] (1,0) -- (1, 5);    
       
   341   \draw [line width = 1.mm] (0, 4) -- (8, 4);    
       
   342   \draw (0.5,3.5) node {$1$};
       
   343   \draw (0.5,2.5) node {$2$};
       
   344   \draw (0.5,1.5) node {$3$};
       
   345   \draw (0.5,0.5) node {$4$};
       
   346   
       
   347   \draw (1.5,3.5) node {\only<1>{$3$}\only<2->{$4$}};
       
   348   \draw (2.5,3.5) node {$3$};
       
   349   \draw (3.5,3.5) node {$3$};
       
   350   \draw (4.5,3.5) node {$3$};
       
   351   \draw (5.5,3.5) node {$3$};
       
   352   \draw (6.5,3.5) node {$3$};
       
   353   \draw (7.5,3.5) node {$\ldots$};
       
   354   
       
   355   \draw (1.5,2.5) node {$1$};
       
   356   \draw (2.5,2.5) node {\only<1-2>{$2$}\only<3->{$3$}};
       
   357   \draw (3.5,2.5) node {$3$};
       
   358   \draw (4.5,2.5) node {$4$};
       
   359   \draw (5.5,2.5) node {$5$};
       
   360   \draw (6.5,2.5) node {$6$};
       
   361   \draw (7.5,2.5) node {$7$};
       
   362 
       
   363   \draw (1.5,1.5) node {$0$};
       
   364   \draw (2.5,1.5) node {$1$};
       
   365   \draw (3.5,1.5) node {\only<1-3>{$0$}\only<4->{$1$}};
       
   366   \draw (4.5,1.5) node {$1$};
       
   367   \draw (5.5,1.5) node {$0$};
       
   368   \draw (6.5,1.5) node {$\ldots$};
       
   369   
       
   370    \draw (1.5,0.5) node {$7$};
       
   371   \draw (2.5,0.5) node {$8$};
       
   372   \draw (3.5,0.5) node {$5$};
       
   373   \draw (4.5,0.5) node {\only<1-4>{$3$}\only<5->{$4$}};
       
   374   \draw (5.5,0.5) node {$9$};
       
   375   \draw (6.5,0.5) node {$\ldots$};
       
   376   
       
   377    \draw (1.5,-0.5) node {$\ldots$};
       
   378    \draw (8.5,3.5) node {$\ldots$};
       
   379   \end{tikzpicture}
       
   380   \end{center}
       
   381   \mbox{}\\[-20mm]\mbox{}
       
   382   
       
   383   \onslide<6->{
       
   384   \begin{center}
       
   385   \Large\bl{$|\mathbb{N}| < |R|$}
       
   386   \end{center}
       
   387   }
       
   388 
       
   389 \end{frame}
       
   390 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   391 
       
   392 
       
   393 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   394 \mode<presentation>{
       
   395 \begin{frame}[t]
       
   396  \frametitle{The Set of Problems}
       
   397 
       
   398   $\aleph_0$
       
   399 
       
   400   \begin{center}
       
   401   \begin{tikzpicture}
       
   402   \draw [fill, color=black!50] (1,4) rectangle (2, 3);
       
   403   \draw [fill, color=black!50] (2,3) rectangle (3, 2);
       
   404   \draw [fill, color=black!50] (3,2) rectangle (4, 1);
       
   405   \draw [fill, color=black!50] (4,1) rectangle (5, 0);
       
   406   \draw (0, 0) grid (8, 5);
       
   407   \draw [line width = 1.mm] (1,0) -- (1, 5);    
       
   408   \draw [line width = 1.mm] (0, 4) -- (8, 4);    
       
   409   \draw (0.5,3.5) node {$1$};
       
   410   \draw (0.5,2.5) node {$2$};
       
   411   \draw (0.5,1.5) node {$3$};
       
   412   \draw (0.5,0.5) node {$4$};
       
   413   
       
   414   \draw (1.5,4.5) node {$0$};
       
   415   \draw (2.5,4.5) node {$1$};
       
   416   \draw (3.5,4.5) node {$2$};
       
   417   \draw (4.5,4.5) node {$3$};
       
   418   \draw (5.5,4.5) node {$4$};
       
   419   \draw (6.5,4.5) node {$5$};
       
   420   \draw (7.5,4.5) node {$\ldots$}; 
       
   421   
       
   422   \draw (1.5,3.5) node {$0$};
       
   423   \draw (2.5,3.5) node {$1$};
       
   424   \draw (3.5,3.5) node {$0$};
       
   425   \draw (4.5,3.5) node {$1$};
       
   426   \draw (5.5,3.5) node {$0$};
       
   427   \draw (6.5,3.5) node {$1$};
       
   428   \draw (7.5,3.5) node {$\ldots$};
       
   429   
       
   430   \draw (1.5,2.5) node {$0$};
       
   431   \draw (2.5,2.5) node {$0$};
       
   432   \draw (3.5,2.5) node {$0$};
       
   433   \draw (4.5,2.5) node {$1$};
       
   434   \draw (5.5,2.5) node {$1$};
       
   435   \draw (6.5,2.5) node {$0$};
       
   436   \draw (7.5,2.5) node {$0$};
       
   437 
       
   438   \draw (1.5,1.5) node {$0$};
       
   439   \draw (2.5,1.5) node {$0$};
       
   440   \draw (3.5,1.5) node {$0$};
       
   441   \draw (4.5,1.5) node {$0$};
       
   442   \draw (5.5,1.5) node {$0$};
       
   443   \draw (6.5,1.5) node {$\ldots$};
       
   444   
       
   445    \draw (1.5,0.5) node {$1$};
       
   446   \draw (2.5,0.5) node {$1$};
       
   447   \draw (3.5,0.5) node {$0$};
       
   448   \draw (4.5,0.5) node {$1$};
       
   449   \draw (5.5,0.5) node {$1$};
       
   450   \draw (6.5,0.5) node {$\ldots$};
       
   451   
       
   452   \draw (1.5,-0.5) node {$\ldots$};
       
   453    \draw (8.5,3.5) node {$\ldots$};
       
   454 
       
   455   \end{tikzpicture}
       
   456   \end{center}
       
   457   
       
   458   
       
   459   \onslide<2>{
       
   460   \begin{center}
       
   461   \large \bl{|Progs| $=$ $|\mathbb{N}|$ $<$ |Probs|}
       
   462  \end{center}
       
   463   }
       
   464 
       
   465 
       
   466 \end{frame}}
       
   467 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   468 
       
   469 
       
   470 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   471 \mode<presentation>{
       
   472 \begin{frame}[c]
       
   473 \frametitle{Halting Problem}
       
   474 
       
   475 \large
       
   476 Assume a program \bl{$H$} that decides for all programs \bl{$A$} and all 
       
   477 input data \bl{$D$} whether\bigskip
       
   478 
       
   479 \begin{itemize}
       
   480 \item \bl{$H(A, D) \dn 1$} iff \bl{$A(D)$} terminates
       
   481 \item \bl{$H(A, D) \dn 0$} otherwise
       
   482 \end{itemize}
       
   483 
       
   484 \end{frame}}
       
   485 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   486 
       
   487 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   488 \mode<presentation>{
       
   489 \begin{frame}[c]
       
   490 \frametitle{Halting Problem (2)}
       
   491 
       
   492 \large
       
   493 Given such a program \bl{$H$} define the following program \bl{$C$}:
       
   494 for all programs \bl{$A$}\bigskip
       
   495 
       
   496 \begin{itemize}
       
   497 \item \bl{$C(A) \dn 0$} iff \bl{$H(A, A) = 0$} 
       
   498 \item \bl{$C(A) \dn$ loops} otherwise
       
   499 \end{itemize}
       
   500 
       
   501 \end{frame}}
       
   502 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   503 
       
   504 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   505 \mode<presentation>{
       
   506 \begin{frame}[c]
       
   507 \frametitle{Contradiction}
       
   508 
       
   509 
       
   510 \bl{$H(C, C)$} is either \bl{$0$} or \bl{$1$}.
       
   511 
       
   512 \begin{itemize}
       
   513 \item \bl{$H(C, C) = 1$} $\stackrel{\text{def}\,H}{\Rightarrow}$ \bl{$C(C)\downarrow$} $\stackrel{\text{def}\,C}{\Rightarrow}$ \bl{$H(C, C)=0$} 
       
   514 \item \bl{$H(C, C) = 0$} $\stackrel{\text{def}\,H}{\Rightarrow}$ \bl{$C(C)$} loops $\stackrel{\text{def}\,C}{\Rightarrow}$\\ 
       
   515 \hspace{7cm}\bl{$H(C, C)=1$} 
       
   516 \end{itemize}
       
   517 
       
   518 Contradiction in both cases. So \bl{$H$} cannot exist.
       
   519 
       
   520 \end{frame}}
       
   521 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   522 
       
   523 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   524   \mode<presentation>{
       
   525   \begin{frame}[c]
       
   526   \frametitle{Take Home Points}
       
   527  \large
       
   528  
       
   529   \begin{itemize}
       
   530   \item there are sets that are more infinite than others\bigskip
       
   531   \item even  with the most powerful computer we can imagine, there 
       
   532   are problems that cannot be solved by any program\bigskip\bigskip
       
   533   
       
   534   \item in CS we actually hit quite often such problems (halting problem)
       
   535   \end{itemize}
       
   536 
       
   537   \end{frame}}
       
   538   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   539   
       
   540 
       
   541 \end{document}
       
   542 
       
   543 %%% Local Variables:  
       
   544 %%% mode: latex
       
   545 %%% TeX-master: t
       
   546 %%% End: 
       
   547