hws/hw03.tex
changeset 258 1e4da6d2490c
parent 146 9da175d5eb63
child 264 4deef8ac5d72
equal deleted inserted replaced
257:70c307641d05 258:1e4da6d2490c
     9 \section*{Homework 3}
     9 \section*{Homework 3}
    10 
    10 
    11 \begin{enumerate}
    11 \begin{enumerate}
    12 \item What is a regular language?
    12 \item What is a regular language?
    13 
    13 
    14 \item Assume you have an alphabet consisting of the letters $a$, $b$ and $c$ only.
    14 \item Assume you have an alphabet consisting of the letters
    15 (1) Find a regular expression that recognises the two strings $ab$ and $ac$. (2)
    15       $a$, $b$ and $c$ only. (1) Find a regular expression
    16 Find a regular expression that matches all strings \emph{except} these two strings.
    16       that recognises the two strings $ab$ and $ac$. (2) Find
    17 Note, you can only use regular expressions of the form 
    17       a regular expression that matches all strings
       
    18       \emph{except} these two strings. Note, you can only use
       
    19       regular expressions of the form 
       
    20       
       
    21       \begin{center} $r ::=
       
    22       \varnothing \;|\; \epsilon \;|\; c \;|\; r_1 + r_2 \;|\;
       
    23       r_1 \cdot r_2 \;|\; r^*$ 
       
    24       \end{center}
       
    25 
       
    26 \item Define the function \textit{zeroable} which takes a
       
    27       regular expression as argument and returns a boolean.
       
    28       The function should satisfy the following property:
       
    29 
    18 \begin{center}
    30 \begin{center}
    19 $r ::= \varnothing \;|\; \epsilon \;|\; c  \;|\; r_1 + r_2  \;|\; r_1 \cdot r_2 \;|\; r^*$
    31 $\textit{zeroable(r)} \;\text{if and only if}\; L(r) = \varnothing$
    20 \end{center}
       
    21 
       
    22 \item Define the function $zeroable$ which takes a regular expression as argument
       
    23 and returns a boolean. The 
       
    24 function should satisfy the following property:
       
    25 \begin{center}
       
    26 $zeroable(r)$ \;if and only if\; $L(r) = \varnothing$
       
    27 \end{center}
    32 \end{center}
    28 
    33 
    29 \item Define the tokens and regular expressions for a language
    34 \item Define the tokens and regular expressions for a language
    30 consisting of numbers, left-parenthesis (, right-parenthesis ),
    35       consisting of numbers, left-parenthesis $($,
    31 identifiers and the operations $+$, $-$ and $*$. Can the following strings 
    36       right-parenthesis $)$, identifiers and the operations $+$,
    32 in this language be lexed?
    37       $-$ and $*$. Can the following strings in this language
       
    38       be lexed?
    33 
    39 
    34 \begin{itemize}
    40 \begin{itemize}
    35 \item \texttt{"}$(a + 3) * b$\texttt{"}
    41   \item $(a + 3) * b$
    36 \item \texttt{"}$)()++ -33$\texttt{"}
    42   \item $)()++ -33$
    37 \item \texttt{"}$(a / 3) * 3$\texttt{"}
    43   \item $(a / 3) * 3$
    38 \end{itemize}
    44 \end{itemize}
    39 
    45 
       
    46 In case they can, can you give the corresponding token
       
    47 sequences.
    40 
    48 
    41 In case they can, can you give the corresponding token sequences.
       
    42 \end{enumerate}
    49 \end{enumerate}
    43 
    50 
    44 
    51 
    45 
    52 
    46 \end{document}
    53 \end{document}