hws/hw07.tex
changeset 102 1ab41c59e3d3
parent 93 4794759139ea
child 183 b17eff695c7f
equal deleted inserted replaced
101:4758a6155878 102:1ab41c59e3d3
       
     1 \documentclass{article}
       
     2 \usepackage{charter}
       
     3 \usepackage{hyperref}
       
     4 \usepackage{amssymb}
       
     5 \usepackage{amsmath}
       
     6 \usepackage{tikz}
       
     7 \usetikzlibrary{automata}
       
     8 
       
     9 \newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% for definitions
       
    10 
       
    11 \begin{document}
       
    12 
       
    13 \section*{Homework 7}
       
    14 
       
    15 \begin{enumerate}
       
    16 \item Suppose the following finite deterministic automaton over the alphabet $\{0, 1\}$.
       
    17 
       
    18 \begin{center}
       
    19 \begin{tikzpicture}[scale=2, line width=0.5mm]
       
    20   \node[state, initial, accepting]        (q0) at ( 0,1) {$q_0$};
       
    21   \node[state, accepting]                    (q1) at ( 1,1) {$q_1$};
       
    22  \node[state] (q2) at ( 2,1) {$q_2$};
       
    23   \path[->] (q0) edge[bend left] node[above] {$0$} (q1)
       
    24                   (q1) edge[bend left] node[above] {$1$} (q0)
       
    25                   (q2) edge[bend left=50] node[below] {$1$} (q0)
       
    26                   (q1) edge node[above] {$0$} (q2)
       
    27                   (q2) edge [loop right] node {$0$} ()
       
    28                   (q0) edge [loop below] node {$1$} ()
       
    29             ;
       
    30 \end{tikzpicture}
       
    31 \end{center}
       
    32 
       
    33 Give a regular expression that can recognise the same language as
       
    34 this automaton. (Hint: If you use Brzozwski's method, you can assume
       
    35 Arden's lemma which states that an equation of the form $q = q\cdot r + s$
       
    36 has the unique solution $q = s \cdot r^*$.)
       
    37 
       
    38 \item Consider the following grammar 
       
    39 
       
    40 \begin{center}
       
    41 \begin{tabular}{l}
       
    42 $S \rightarrow N\cdot P$\\
       
    43 $P \rightarrow V\cdot N$\\
       
    44 $N \rightarrow N\cdot N$\\
       
    45 $N \rightarrow A \cdot N$\\
       
    46 $N \rightarrow \texttt{student} \;|\; \texttt{trainer} \;|\; \texttt{team} \;|\; \texttt{trains}$\\
       
    47 $V \rightarrow \texttt{trains} \;|\; \texttt{team}$\\
       
    48 $A \rightarrow \texttt{The} \;|\; \texttt{the}$\\
       
    49 \end{tabular}
       
    50 \end{center}
       
    51 
       
    52 where $S$ is the start symbol and $S$, $P$, $N$, $V$ and $A$ are non-terminals.
       
    53 Using the CYK-algorithm, check whether or not the following string can be parsed
       
    54 by the grammar:
       
    55 
       
    56 \begin{center}
       
    57 \texttt{The trainer trains the student team}
       
    58 \end{center}
       
    59 
       
    60 \item {\bf (Optional)} The task is to match strings where the letters are in alphabetical order---for example, 
       
    61 \texttt{abcfjz} would pass, but \texttt{acb} would not. Whitespace should be ignored---for example
       
    62 \texttt{ab c d} should pass. The point is to try to get the regular expression as short as possible!
       
    63 See:
       
    64 
       
    65 \begin{center}
       
    66 \url{http://callumacrae.github.com/regex-tuesday/challenge11.html}
       
    67 \end{center}
       
    68 \end{enumerate}
       
    69 
       
    70 \end{document}
       
    71 
       
    72 %%% Local Variables: 
       
    73 %%% mode: latex
       
    74 %%% TeX-master: t
       
    75 %%% End: