hws/hw02.tex
changeset 102 1ab41c59e3d3
parent 93 4794759139ea
child 104 ffde837b1db1
equal deleted inserted replaced
101:4758a6155878 102:1ab41c59e3d3
       
     1 \documentclass{article}
       
     2 \usepackage{charter}
       
     3 \usepackage{hyperref}
       
     4 \usepackage{amssymb}
       
     5 \usepackage{amsmath}
       
     6 
       
     7 \begin{document}
       
     8 
       
     9 \section*{Homework 2}
       
    10 
       
    11 \begin{enumerate}
       
    12 \item Give regular expressions for (a) decimal numbers and for (b) binary numbers. 
       
    13 (Hint: Observe that the empty string is not a number. Also observe that leading 0s 
       
    14 are normally not written.)
       
    15 
       
    16 \item Decide whether the following two regular expressions are equivalent $(\epsilon + a)^* \equiv^? a^*$ and 
       
    17 $(a \cdot b)^* \cdot a \equiv^? a \cdot (b \cdot a)^*$.
       
    18 
       
    19 \item Given the regular expression $r = (a \cdot b + b)^*$. Compute what the derivative of $r$ is with respect to
       
    20 $a$ and $b$. Is $r$ nullable?
       
    21 
       
    22 \item What is a regular language?
       
    23 
       
    24 \item Prove that for all regular expressions $r$ we have
       
    25 \begin{center}
       
    26 $\text{nullable}(r)$ \quad if and only if \quad $\texttt{""} \in L(r)$
       
    27 \end{center}
       
    28 
       
    29 \end{enumerate}
       
    30 
       
    31 \end{document}
       
    32 
       
    33 %%% Local Variables: 
       
    34 %%% mode: latex
       
    35 %%% TeX-master: t
       
    36 %%% End: