equal
deleted
inserted
replaced
|
1 \documentclass{article} |
|
2 \usepackage{charter} |
|
3 \usepackage{hyperref} |
|
4 \usepackage{amssymb} |
|
5 \usepackage{amsmath} |
|
6 |
|
7 \begin{document} |
|
8 |
|
9 \section*{Homework 2} |
|
10 |
|
11 \begin{enumerate} |
|
12 \item Give regular expressions for (a) decimal numbers and for (b) binary numbers. |
|
13 (Hint: Observe that the empty string is not a number. Also observe that leading 0s |
|
14 are normally not written.) |
|
15 |
|
16 \item Decide whether the following two regular expressions are equivalent $(\epsilon + a)^* \equiv^? a^*$ and |
|
17 $(a \cdot b)^* \cdot a \equiv^? a \cdot (b \cdot a)^*$. |
|
18 |
|
19 \item Given the regular expression $r = (a \cdot b + b)^*$. Compute what the derivative of $r$ is with respect to |
|
20 $a$ and $b$. Is $r$ nullable? |
|
21 |
|
22 \item What is a regular language? |
|
23 |
|
24 \item Prove that for all regular expressions $r$ we have |
|
25 \begin{center} |
|
26 $\text{nullable}(r)$ \quad if and only if \quad $\texttt{""} \in L(r)$ |
|
27 \end{center} |
|
28 |
|
29 \end{enumerate} |
|
30 |
|
31 \end{document} |
|
32 |
|
33 %%% Local Variables: |
|
34 %%% mode: latex |
|
35 %%% TeX-master: t |
|
36 %%% End: |