|      1 \documentclass{article} |         | 
|      2 \usepackage{charter} |         | 
|      3 \usepackage{hyperref} |         | 
|      4 \usepackage{amssymb} |         | 
|      5 \usepackage{amsmath} |         | 
|      6 \usepackage{tikz} |         | 
|      7 \usetikzlibrary{automata} |         | 
|      8  |         | 
|      9 \newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% for definitions |         | 
|     10  |         | 
|     11 \begin{document} |         | 
|     12  |         | 
|     13 \section*{Homework 5} |         | 
|     14  |         | 
|     15 \begin{enumerate} |         | 
|     16 \item Define the following regular expressions  |         | 
|     17  |         | 
|     18 \begin{center} |         | 
|     19 \begin{tabular}{ll} |         | 
|     20 $r^+$ & (one or more matches)\\ |         | 
|     21 $r^?$   & (zero or one match)\\ |         | 
|     22 $r^{\{n\}}$ & (exactly $n$ matches)\\ |         | 
|     23 $r^{\{m, n\}}$ & (at least $m$ and maximal $n$ matches, with the\\ |         | 
|     24 &  \phantom{(}assumption $m \le n$)\\ |         | 
|     25 \end{tabular} |         | 
|     26 \end{center} |         | 
|     27  |         | 
|     28 in terms of the usual regular expressions |         | 
|     29  |         | 
|     30 \begin{center} |         | 
|     31 $r ::= \varnothing \;|\; \epsilon \;|\; c  \;|\; r_1 + r_2  \;|\; r_1 \cdot r_2 \;|\; r^*$ |         | 
|     32 \end{center} |         | 
|     33  |         | 
|     34 \item Given a deterministic finite automata $A(Q, q_0, F, \delta)$,  |         | 
|     35 define which language is recognised by this automaton. |         | 
|     36  |         | 
|     37 \item Given the following deterministic finite automata over the alphabet |         | 
|     38 $\{a, b\}$, find an automaton that recognises the complement language. |         | 
|     39 (Hint: Recall that for the algorithm from the lectures, the automaton needs to be |         | 
|     40 in completed form, that is have a transition for every letter from the alphabet.)  |         | 
|     41  |         | 
|     42 \begin{center} |         | 
|     43 \begin{tikzpicture}[scale=3, line width=0.7mm] |         | 
|     44   \node[state, initial]        (q0) at ( 0,1) {$q_0$}; |         | 
|     45   \node[state, accepting]  (q1) at ( 1,1) {$q_1$}; |         | 
|     46   \path[->] (q0) edge node[above] {$a$} (q1) |         | 
|     47                    (q1) edge [loop right] node {$b$} () |         | 
|     48                   ; |         | 
|     49 \end{tikzpicture} |         | 
|     50 \end{center} |         | 
|     51  |         | 
|     52 \item Given the following deterministic finite automaton |         | 
|     53  |         | 
|     54 \begin{center} |         | 
|     55 \begin{tikzpicture}[scale=3, line width=0.7mm] |         | 
|     56   \node[state, initial]        (q0) at ( 0,1) {$q_0$}; |         | 
|     57   \node[state,accepting]  (q1) at ( 1,1) {$q_1$}; |         | 
|     58   \node[state, accepting] (q2) at ( 2,1) {$q_2$}; |         | 
|     59   \path[->] (q0) edge node[above] {$b$} (q1) |         | 
|     60                   (q1) edge [loop above] node[above] {$a$} () |         | 
|     61                   (q2) edge [loop above] node[above] {$a, b$} () |         | 
|     62                   (q1) edge node[above] {$b$} (q2) |         | 
|     63                   (q0) edge[bend right] node[below] {$a$} (q2) |         | 
|     64                   ; |         | 
|     65 \end{tikzpicture} |         | 
|     66 \end{center} |         | 
|     67 find the corresponding minimal automaton. State clearly which nodes |         | 
|     68 can be merged. |         | 
|     69  |         | 
|     70 \item Given the following non-deterministic finite automaton over the alphabet $\{a, b\}$, |         | 
|     71 find a deterministic finite automaton that recognises the same language: |         | 
|     72  |         | 
|     73 \begin{center} |         | 
|     74 \begin{tikzpicture}[scale=3, line width=0.7mm] |         | 
|     75   \node[state, initial]        (q0) at ( 0,1) {$q_0$}; |         | 
|     76   \node[state]                    (q1) at ( 1,1) {$q_1$}; |         | 
|     77   \node[state, accepting] (q2) at ( 2,1) {$q_2$}; |         | 
|     78   \path[->] (q0) edge node[above] {$a$} (q1) |         | 
|     79                   (q0) edge [loop above] node[above] {$b$} () |         | 
|     80                   (q0) edge [loop below] node[below] {$a$} () |         | 
|     81                   (q1) edge node[above] {$a$} (q2) |         | 
|     82                   ; |         | 
|     83 \end{tikzpicture} |         | 
|     84 \end{center} |         | 
|     85  |         | 
|     86 \item |         | 
|     87 Given the following finite deterministic automaton over the alphabet $\{a, b\}$: |         | 
|     88  |         | 
|     89 \begin{center} |         | 
|     90 \begin{tikzpicture}[scale=2, line width=0.5mm] |         | 
|     91   \node[state, initial, accepting]        (q0) at ( 0,1) {$q_0$}; |         | 
|     92   \node[state, accepting]                    (q1) at ( 1,1) {$q_1$}; |         | 
|     93  \node[state] (q2) at ( 2,1) {$q_2$}; |         | 
|     94   \path[->] (q0) edge[bend left] node[above] {$a$} (q1) |         | 
|     95                   (q1) edge[bend left] node[above] {$b$} (q0) |         | 
|     96                   (q2) edge[bend left=50] node[below] {$b$} (q0) |         | 
|     97                   (q1) edge node[above] {$a$} (q2) |         | 
|     98                   (q2) edge [loop right] node {$a$} () |         | 
|     99                   (q0) edge [loop below] node {$b$} () |         | 
|    100             ; |         | 
|    101 \end{tikzpicture} |         | 
|    102 \end{center} |         | 
|    103  |         | 
|    104 Give a regular expression that can recognise the same language as |         | 
|    105 this automaton. (Hint: If you use Brzozwski's method, you can assume |         | 
|    106 Arden's lemma which states that an equation of the form $q = q\cdot r + s$ |         | 
|    107 has the unique solution $q = s \cdot r^*$.)\ |         | 
|    108 \end{enumerate} |         | 
|    109  |         | 
|    110  |         | 
|    111 \end{document} |         | 
|    112  |         | 
|    113 %%% Local Variables:  |         | 
|    114 %%% mode: latex |         | 
|    115 %%% TeX-master: t |         | 
|    116 %%% End:  |         |