slides/slides10.tex
changeset 543 16adebf18ef9
parent 500 c502933be072
child 616 24bbe4e4b37b
equal deleted inserted replaced
542:37a3db7cd655 543:16adebf18ef9
   193   compiler \textcolor{red}{without} leaving any traces in the source code.\\[2mm]
   193   compiler \textcolor{red}{without} leaving any traces in the source code.\\[2mm]
   194   
   194   
   195   & No amount of source level verification will protect 
   195   & No amount of source level verification will protect 
   196   you from such Thompson-hacks.\\[2mm]
   196   you from such Thompson-hacks.\\[2mm]
   197 
   197 
   198   & Therefore in safety-critical systems it is important to rely 
       
   199   on only a very small TCB.
       
   200   \end{tabular}
   198   \end{tabular}
   201   \end{column}
   199   \end{column}
   202   \end{columns}
   200   \end{columns}
   203 
   201 
   204   \only<2>{
   202   \only<2>{
   223   \end{textblock}}
   221   \end{textblock}}
   224 
   222 
   225   \end{frame}}
   223   \end{frame}}
   226   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
   224   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
   227 
   225 
   228 
   226 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   229 
   227 \begin{frame}[c]
       
   228 \frametitle{Compilers \& Boeings 777}
       
   229 
       
   230 First flight in 1994. They want to achieve triple redundancy in hardware
       
   231 faults.\bigskip
       
   232 
       
   233 They compile 1 Ada program to\medskip
       
   234 
       
   235 \begin{itemize}
       
   236 \item Intel 80486
       
   237 \item Motorola 68040 (old Macintosh's)
       
   238 \item AMD 29050 (RISC chips used often in laser printers)
       
   239 \end{itemize}\medskip
       
   240 
       
   241 using 3 independent compilers.\bigskip\pause
       
   242 
       
   243 \small Airbus uses C and static analysers. Recently started using CompCert.
       
   244 
       
   245 \end{frame}
       
   246 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   247 
       
   248 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   249 \begin{frame}[c]
       
   250 
       
   251 {\Large\bf  
       
   252 How many strings are in \bl{$L(a^*)$}?}\bigskip\pause 
       
   253 
       
   254 \normalsize
       
   255 \begin{center}
       
   256 \begin{tabular}{llllll}
       
   257   \bl{$[]$} &  \bl{$a$} &  \bl{$aa$} & \bl{$aaa$} & \bl{$aaaa$} & \ldots\\
       
   258   \bl{0}  &  \bl{1} &  \bl{2}  & \bl{3}   & \bl{4}  & \ldots    
       
   259 \end{tabular}
       
   260 \end{center}
       
   261 
       
   262 \end{frame}
       
   263 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   264 
       
   265 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   266 \begin{frame}[c]
       
   267 
       
   268 \Large\bf There are more problems, than there are
       
   269 programs.\bigskip\bigskip\pause\\
       
   270 
       
   271 There must be a problem for which there is no program.
       
   272 \end{frame}
       
   273 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   274 
       
   275 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   276 \begin{frame}[c]
       
   277 \frametitle{Subsets}
       
   278 
       
   279 \Large
       
   280 If \bl{$A \subseteq B$} then \bl{$A$} has fewer or equal elements 
       
   281 than \bl{$B$}\bigskip\bigskip
       
   282 
       
   283 \Large
       
   284 \bl{$A \subseteq B$} and \bl{$B \subseteq A$}\bigskip
       
   285 
       
   286 then \bl{$A = B$}
       
   287 \end{frame}
       
   288 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   289 
       
   290 
       
   291 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   292   \begin{frame}[c]
       
   293   
       
   294   \begin{center}
       
   295   \begin{tikzpicture}
       
   296   
       
   297   \draw (-4,2.5) node [scale=2.5] (X) 
       
   298     {\begin{tabular}{l}
       
   299      $\{$  
       
   300      \!\includegraphics[scale=0.02]{../pics/o1.jpg},
       
   301      \includegraphics[scale=0.02]{../pics/o2.jpg},
       
   302      \!\includegraphics[scale=0.02]{../pics/o3.jpg},
       
   303      \includegraphics[scale=0.02]{../pics/o4.jpg},
       
   304      \!\includegraphics[scale=0.027]{../pics/o5.jpg}
       
   305      $\}$
       
   306     \end{tabular}};
       
   307     
       
   308     \draw (-5.6,-2.5) node [scale=2.5] (Y) 
       
   309     {\begin{tabular}{l}
       
   310      $\{$  
       
   311      \!\includegraphics[scale=0.059]{../pics/a1.jpg},
       
   312      \includegraphics[scale=0.048]{../pics/a2.jpg},
       
   313      \includegraphics[scale=0.02]{../pics/a3.jpg}
       
   314      $\}$
       
   315     \end{tabular}};
       
   316     
       
   317      \draw (0,1.5) node (X1) {5 elements};
       
   318      \draw (0,-3.5) node (y1) {3 elements};
       
   319   \end{tikzpicture}
       
   320   \end{center}
       
   321 
       
   322   \end{frame}
       
   323 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   324 
       
   325 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   326   \begin{frame}[c]
       
   327   \frametitle{Newton vs Feynman}
       
   328   
       
   329   \begin{center}
       
   330   \begin{tabular}{cc}
       
   331   \includegraphics[scale=0.2]{../pics/newton.jpg} &
       
   332   \includegraphics[scale=0.2]{../pics/feynman.jpg}\\
       
   333   classical physics & quantum physics
       
   334   \end{tabular}
       
   335   \end{center}
       
   336   \end{frame}
       
   337 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   338 
       
   339 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   340   \begin{frame}[c]
       
   341   \frametitle{The Goal of the Talk}
       
   342  \large
       
   343   \begin{itemize}
       
   344   \item show you that something very unintuitive happens with very large sets	
       
   345   \bigskip\bigskip
       
   346   
       
   347   \item convince you that there are more {\bf problems} than {\bf programs}
       
   348   \end{itemize}	
       
   349   \end{frame}
       
   350 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   351 
       
   352 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   353 \begin{frame}[t]
       
   354 %
       
   355   \begin{center}
       
   356   \begin{tikzpicture}
       
   357  
       
   358   \draw (-5,2.5) node [scale=2.3] (X) 
       
   359     {\begin{tabular}{@ {\hspace{-3mm}}l}
       
   360      \bl{$B$ $=$ $\{$  
       
   361      \!\includegraphics[scale=0.02]{../pics/o1.jpg},
       
   362      \includegraphics[scale=0.02]{../pics/o2.jpg},
       
   363      \!\includegraphics[scale=0.02]{../pics/o3.jpg},
       
   364      \includegraphics[scale=0.02]{../pics/o4.jpg},
       
   365      \!\includegraphics[scale=0.027]{../pics/o5.jpg}
       
   366      $\}$}
       
   367     \end{tabular}};
       
   368     
       
   369     \draw (-6.6,-0.5) node [scale=2.3] (Y) 
       
   370     {\begin{tabular}{@ {\hspace{-3mm}}l}
       
   371      \bl{$A$ $=$ $\{$  
       
   372      \!\includegraphics[scale=0.059]{../pics/a1.jpg},
       
   373      \includegraphics[scale=0.048]{../pics/a2.jpg},
       
   374      \includegraphics[scale=0.02]{../pics/a3.jpg}
       
   375      $\}$}
       
   376      \end{tabular}};
       
   377   
       
   378      \only<1>{\draw (-5, -3) node[scale=2] 
       
   379        {\bl{$|A|$ $=$ $5$}, \bl{$|B|$ $=$ $3$}};}
       
   380      \only<2>{
       
   381        \draw [->, line width=1mm, red] (-7.4, 0.2) -- (-6.1, 2.1);
       
   382        \draw [->, line width=1mm, red] (-5.8, 0.2) -- (-3.1, 2.1);
       
   383        \draw [->, line width=1mm, red] (-4.5, 0.2) -- (-7.6, 2.1);
       
   384        \draw (-5, -3) node[scale=2] {then \bl{$|A|$ $\le$ $|B|$}};
       
   385        }
       
   386     \only<3>{
       
   387        \draw [<-, line width=1mm, red] (-7.5, 0.2) -- (-6.1, 2.1);
       
   388        \draw [<-, line width=1mm, red] (-7.3, 0.2) -- (-3.1, 2.1);
       
   389        \draw [<-, line width=1mm, red] (-6, 0.2) -- (-7.5, 2.1);
       
   390        \draw [<-, line width=1mm, red] (-4.5, 0.2) -- (-4.5, 2.1);
       
   391        \draw [<-, line width=1mm, red] (-4.3, 0.2) -- (-1.3, 2.1);
       
   392        
       
   393        \draw (-5, -3) node[scale=1.5] {\small{}for \bl{$=$}
       
   394         has to be a {\bf one-to-one} mapping};
       
   395        }
       
   396 
       
   397     
       
   398   \end{tikzpicture}
       
   399   \end{center}
       
   400 
       
   401 \end{frame}
       
   402 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   403 
       
   404 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   405 \begin{frame}[c]
       
   406 \frametitle{Cardinality}
       
   407 
       
   408 \Large
       
   409 \bl{$|A|$} $\dn$ ``how many elements''\bigskip\\
       
   410 
       
   411 \bl{$A \subseteq B  \Rightarrow |A| \leq |B|$}\bigskip\\\pause
       
   412 
       
   413 if there is an injective function \bl{$f: A \rightarrow B$} then \bl{$|A| \leq |B|$}\
       
   414 
       
   415 \begin{center}
       
   416 \bl{\large$\forall x y.\; f(x) = f(y) \Rightarrow x = y$}
       
   417 \end{center}
       
   418 \end{frame}
       
   419 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   420 
       
   421 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   422 \begin{frame}[t]
       
   423 
       
   424   \begin{center}
       
   425   \begin{tikzpicture}
       
   426   
       
   427   \draw (-6.6,2.5) node [scale=2.3] (X) 
       
   428     {\begin{tabular}{@ {\hspace{-3mm}}l}
       
   429      $A$ $=$ $\{$  
       
   430      \!\includegraphics[scale=0.02]{../pics/o1.jpg},
       
   431      \includegraphics[scale=0.02]{../pics/o2.jpg},
       
   432      \!\includegraphics[scale=0.02]{../pics/o3.jpg}
       
   433      $\}$
       
   434     \end{tabular}};
       
   435     
       
   436     \draw (-6.6,-0.5) node [scale=2.3] (Y) 
       
   437     {\begin{tabular}{@ {\hspace{-3mm}}l}
       
   438      $B$ $=$ $\{$  
       
   439      \!\includegraphics[scale=0.059]{../pics/a1.jpg},
       
   440      \includegraphics[scale=0.048]{../pics/a2.jpg},
       
   441      \includegraphics[scale=0.02]{../pics/a3.jpg}
       
   442      $\}$
       
   443      \end{tabular}};
       
   444    \onslide<3->{\draw (-7, -3) node[scale=1.5] 
       
   445       {then \bl{$|A|$ \alert{$=$} $|B|$}};}
       
   446      \only<1>{
       
   447        \draw [->, line width=1mm, red] (-7.4, 0.2) -- (-6.1, 2.1);
       
   448        \draw [->, line width=1mm, red] (-5.8, 0.2) -- (-4.3, 2.1);
       
   449        \draw [->, line width=1mm, red] (-4.5, 0.2) -- (-7.6, 2.1);
       
   450      }
       
   451     \only<2->{
       
   452        \draw [<-, line width=1mm, blue] (-7.5, 0.2) -- (-7.5, 2.1);
       
   453        \draw [<-, line width=1mm, blue] (-5.8, 0.2) -- (-4.3, 2.1);
       
   454        \draw [<-, line width=1mm, blue] (-4.5, 0.2) -- (-6.1, 2.1);
       
   455        }
       
   456    
       
   457     
       
   458   \end{tikzpicture}
       
   459   \end{center}
       
   460 
       
   461 \end{frame}
       
   462 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   463 
       
   464 
       
   465 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   466 \begin{frame}[c]
       
   467 \frametitle{Natural Numbers}
       
   468 
       
   469 \Large
       
   470 \bl{$\mathbb{N}$} \bl{$\dn$} \bl{$\{0, 1, 2, 3, .......\}$}\bigskip\pause 
       
   471 
       
   472 \bl{$A$} is \alert{countable} iff \bl{$|A| \leq |\mathbb{N}|$}
       
   473 
       
   474 \end{frame}
       
   475 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   476 
       
   477 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   478 \begin{frame}[c]
       
   479 \frametitle{First Question}
       
   480 
       
   481 \Large
       
   482 \bl{$|\mathbb{N} - \{0\}|   \;\;\;\alert{?}\;\;\;  |\mathbb{N}| $}\bigskip\bigskip 
       
   483 
       
   484 \large
       
   485 \bl{$\geq$} or \bl{$\leq$} or \bl{$=$} ?
       
   486 \bigskip\bigskip\bigskip\pause
       
   487 
       
   488 \bl{$x$ $\mapsto$ $x + 1$},\\  \bl{$|\mathbb{N} - \{0\}|$ $=$  
       
   489 $|\mathbb{N}|$}
       
   490 \end{frame}
       
   491 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   492 
       
   493 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   494 \mode<presentation>{
       
   495 \begin{frame}[c]
       
   496 
       
   497 \Large
       
   498 \bl{$|\mathbb{N} - \{0, 1\}|   \;\;\;\alert{?}\;\;\;  |\mathbb{N}| $}\bigskip\pause 
       
   499 
       
   500 \bl{$|\mathbb{N} - \mathbb{O}|   \;\;\;\alert{?}\;\;\;  |\mathbb{N}| $}\bigskip\bigskip
       
   501 
       
   502 \normalsize
       
   503 \bl{$\mathbb{O}$} $\dn$ odd numbers\quad   \bl{$\{1,3,5......\}$}\\ \pause
       
   504 \bl{$\mathbb{E}$} $\dn$ even numbers\quad   \bl{$\{0,2,4......\}$}\\
       
   505 \end{frame}}
       
   506 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   507 
       
   508 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   509 \mode<presentation>{
       
   510 \begin{frame}[c]
       
   511 
       
   512 \Large
       
   513 \bl{$|\mathbb{N} \cup \mathbb{-N}|   \;\;\;\alert{?}\;\;\;  |\mathbb{N}| $}\bigskip\bigskip
       
   514 
       
   515 
       
   516 \normalsize
       
   517 \bl{$\mathbb{\phantom{-}N}$} $\dn$ positive numbers\quad   \bl{$\{0,1,2,3,......\}$}\\
       
   518 \bl{$\mathbb{-N}$} $\dn$ negative numbers\quad   \bl{$\{0,-1,-2,-3,......\}$}\\
       
   519 \end{frame}}
       
   520 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   521 
       
   522 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   523 \mode<presentation>{
       
   524 \begin{frame}[c]
       
   525 
       
   526 \Large
       
   527 \bl{$A$} is \alert{countable} if there exists an injective \bl{$f : A \rightarrow \mathbb{N}$}\bigskip
       
   528 
       
   529 \bl{$A$} is \alert{uncountable} if there does not exist an injective \bl{$f : A \rightarrow \mathbb{N}$}\bigskip\bigskip 
       
   530 
       
   531 
       
   532 countable:  \bl{$|A| \leq |\mathbb{N}|$}\\
       
   533 uncountable:  \bl{$|A| > |\mathbb{N}|$}\pause\bigskip
       
   534 
       
   535 
       
   536 Does there exist such an \bl{$A$} ?
       
   537 
       
   538 \end{frame}}
       
   539 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   540 
       
   541 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   542   \mode<presentation>{
       
   543   \begin{frame}[c]
       
   544   \frametitle{Hilbert's Hotel}
       
   545 
       
   546   \begin{center}
       
   547  \includegraphics[scale=0.8]{../pics/hilberts_hotel.jpg}
       
   548   \end{center}
       
   549 
       
   550   \begin{itemize}
       
   551   \item \ldots has as many rooms as there are natural numbers
       
   552   \end{itemize}
       
   553 
       
   554   \end{frame}}
       
   555   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   556   
       
   557   
       
   558 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   559 \begin{frame}[t]
       
   560  \frametitle{\begin{tabular}{c}Real Numbers between\\[-2mm] 0 and 1\end{tabular}}
       
   561 
       
   562   \begin{center}
       
   563   \begin{tikzpicture}
       
   564   \draw [fill, color=black!50] (1,4) rectangle (2, 3);
       
   565   \draw [fill, color=black!50] (2,3) rectangle (3, 2);
       
   566   \draw [fill, color=black!50] (3,2) rectangle (4, 1);
       
   567   \draw [fill, color=black!50] (4,1) rectangle (5, 0);
       
   568   \draw (0, 0) grid (8, 5);
       
   569   \draw [line width = 1.mm] (1,0) -- (1, 5);    
       
   570   \draw [line width = 1.mm] (0, 4) -- (8, 4);    
       
   571   \draw (0.5,3.5) node {$1$};
       
   572   \draw (0.5,2.5) node {$2$};
       
   573   \draw (0.5,1.5) node {$3$};
       
   574   \draw (0.5,0.5) node {$4$};
       
   575   
       
   576   \draw (1.5,3.5) node {\only<1>{$3$}\only<2->{$4$}};
       
   577   \draw (2.5,3.5) node {$3$};
       
   578   \draw (3.5,3.5) node {$3$};
       
   579   \draw (4.5,3.5) node {$3$};
       
   580   \draw (5.5,3.5) node {$3$};
       
   581   \draw (6.5,3.5) node {$3$};
       
   582   \draw (7.5,3.5) node {$\ldots$};
       
   583   
       
   584   \draw (1.5,2.5) node {$1$};
       
   585   \draw (2.5,2.5) node {\only<1-2>{$2$}\only<3->{$3$}};
       
   586   \draw (3.5,2.5) node {$3$};
       
   587   \draw (4.5,2.5) node {$4$};
       
   588   \draw (5.5,2.5) node {$5$};
       
   589   \draw (6.5,2.5) node {$6$};
       
   590   \draw (7.5,2.5) node {$7$};
       
   591 
       
   592   \draw (1.5,1.5) node {$0$};
       
   593   \draw (2.5,1.5) node {$1$};
       
   594   \draw (3.5,1.5) node {\only<1-3>{$0$}\only<4->{$1$}};
       
   595   \draw (4.5,1.5) node {$1$};
       
   596   \draw (5.5,1.5) node {$0$};
       
   597   \draw (6.5,1.5) node {$\ldots$};
       
   598   
       
   599    \draw (1.5,0.5) node {$7$};
       
   600   \draw (2.5,0.5) node {$8$};
       
   601   \draw (3.5,0.5) node {$5$};
       
   602   \draw (4.5,0.5) node {\only<1-4>{$3$}\only<5->{$4$}};
       
   603   \draw (5.5,0.5) node {$9$};
       
   604   \draw (6.5,0.5) node {$\ldots$};
       
   605   
       
   606    \draw (1.5,-0.5) node {$\ldots$};
       
   607    \draw (8.5,3.5) node {$\ldots$};
       
   608   \end{tikzpicture}
       
   609   \end{center}
       
   610   \mbox{}\\[-20mm]\mbox{}
       
   611   
       
   612   \onslide<6->{
       
   613   \begin{center}
       
   614   \Large\bl{$|\mathbb{N}| < |R|$}
       
   615   \end{center}
       
   616   }
       
   617 
       
   618 \end{frame}
       
   619 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   620 
       
   621 
       
   622 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   623 \mode<presentation>{
       
   624 \begin{frame}[t]
       
   625  \frametitle{The Set of Problems}
       
   626 
       
   627   $\aleph_0$
       
   628 
       
   629   \begin{center}
       
   630   \begin{tikzpicture}
       
   631   \draw [fill, color=black!50] (1,4) rectangle (2, 3);
       
   632   \draw [fill, color=black!50] (2,3) rectangle (3, 2);
       
   633   \draw [fill, color=black!50] (3,2) rectangle (4, 1);
       
   634   \draw [fill, color=black!50] (4,1) rectangle (5, 0);
       
   635   \draw (0, 0) grid (8, 5);
       
   636   \draw [line width = 1.mm] (1,0) -- (1, 5);    
       
   637   \draw [line width = 1.mm] (0, 4) -- (8, 4);    
       
   638   \draw (0.5,3.5) node {$1$};
       
   639   \draw (0.5,2.5) node {$2$};
       
   640   \draw (0.5,1.5) node {$3$};
       
   641   \draw (0.5,0.5) node {$4$};
       
   642   
       
   643   \draw (1.5,4.5) node {$0$};
       
   644   \draw (2.5,4.5) node {$1$};
       
   645   \draw (3.5,4.5) node {$2$};
       
   646   \draw (4.5,4.5) node {$3$};
       
   647   \draw (5.5,4.5) node {$4$};
       
   648   \draw (6.5,4.5) node {$5$};
       
   649   \draw (7.5,4.5) node {$\ldots$}; 
       
   650   
       
   651   \draw (1.5,3.5) node {$0$};
       
   652   \draw (2.5,3.5) node {$1$};
       
   653   \draw (3.5,3.5) node {$0$};
       
   654   \draw (4.5,3.5) node {$1$};
       
   655   \draw (5.5,3.5) node {$0$};
       
   656   \draw (6.5,3.5) node {$1$};
       
   657   \draw (7.5,3.5) node {$\ldots$};
       
   658   
       
   659   \draw (1.5,2.5) node {$0$};
       
   660   \draw (2.5,2.5) node {$0$};
       
   661   \draw (3.5,2.5) node {$0$};
       
   662   \draw (4.5,2.5) node {$1$};
       
   663   \draw (5.5,2.5) node {$1$};
       
   664   \draw (6.5,2.5) node {$0$};
       
   665   \draw (7.5,2.5) node {$0$};
       
   666 
       
   667   \draw (1.5,1.5) node {$0$};
       
   668   \draw (2.5,1.5) node {$0$};
       
   669   \draw (3.5,1.5) node {$0$};
       
   670   \draw (4.5,1.5) node {$0$};
       
   671   \draw (5.5,1.5) node {$0$};
       
   672   \draw (6.5,1.5) node {$\ldots$};
       
   673   
       
   674    \draw (1.5,0.5) node {$1$};
       
   675   \draw (2.5,0.5) node {$1$};
       
   676   \draw (3.5,0.5) node {$0$};
       
   677   \draw (4.5,0.5) node {$1$};
       
   678   \draw (5.5,0.5) node {$1$};
       
   679   \draw (6.5,0.5) node {$\ldots$};
       
   680   
       
   681   \draw (1.5,-0.5) node {$\ldots$};
       
   682    \draw (8.5,3.5) node {$\ldots$};
       
   683 
       
   684   \end{tikzpicture}
       
   685   \end{center}
       
   686   
       
   687   
       
   688   \onslide<2>{
       
   689   \begin{center}
       
   690   \large \bl{|Progs| $=$ $|\mathbb{N}|$ $<$ |Probs|}
       
   691  \end{center}
       
   692   }
       
   693 
       
   694 
       
   695 \end{frame}}
       
   696 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   697 
       
   698 
       
   699 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   700 \mode<presentation>{
       
   701 \begin{frame}[c]
       
   702 \frametitle{Halting Problem}
       
   703 
       
   704 \large
       
   705 Assume a program \bl{$H$} that decides for all programs \bl{$A$} and all 
       
   706 input data \bl{$D$} whether\bigskip
       
   707 
       
   708 \begin{itemize}
       
   709 \item \bl{$H(A, D) \dn 1$} iff \bl{$A(D)$} terminates
       
   710 \item \bl{$H(A, D) \dn 0$} otherwise
       
   711 \end{itemize}
       
   712 
       
   713 \end{frame}}
       
   714 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   715 
       
   716 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   717 \mode<presentation>{
       
   718 \begin{frame}[c]
       
   719 \frametitle{Halting Problem (2)}
       
   720 
       
   721 \large
       
   722 Given such a program \bl{$H$} define the following program \bl{$C$}:
       
   723 for all programs \bl{$A$}\bigskip
       
   724 
       
   725 \begin{itemize}
       
   726 \item \bl{$C(A) \dn 0$} iff \bl{$H(A, A) = 0$} 
       
   727 \item \bl{$C(A) \dn$ loops} otherwise
       
   728 \end{itemize}
       
   729 
       
   730 \end{frame}}
       
   731 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   732 
       
   733 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   734 \mode<presentation>{
       
   735 \begin{frame}[c]
       
   736 \frametitle{Contradiction}
       
   737 
       
   738 
       
   739 \bl{$H(C, C)$} is either \bl{$0$} or \bl{$1$}.
       
   740 
       
   741 \begin{itemize}
       
   742 \item \bl{$H(C, C) = 1$} $\stackrel{\text{def}\,H}{\Rightarrow}$ \bl{$C(C)\downarrow$} $\stackrel{\text{def}\,C}{\Rightarrow}$ \bl{$H(C, C)=0$} 
       
   743 \item \bl{$H(C, C) = 0$} $\stackrel{\text{def}\,H}{\Rightarrow}$ \bl{$C(C)$} loops $\stackrel{\text{def}\,C}{\Rightarrow}$\\ 
       
   744 \hspace{7cm}\bl{$H(C, C)=1$} 
       
   745 \end{itemize}
       
   746 
       
   747 Contradiction in both cases. So \bl{$H$} cannot exist.
       
   748 
       
   749 \end{frame}}
       
   750 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   751 
       
   752 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   753   \mode<presentation>{
       
   754   \begin{frame}[c]
       
   755   \frametitle{Take Home Points}
       
   756  \large
       
   757  
       
   758   \begin{itemize}
       
   759   \item there are sets that are more infinite than others\bigskip
       
   760   \item even  with the most powerful computer we can imagine, there 
       
   761   are problems that cannot be solved by any program\bigskip\bigskip
       
   762   
       
   763   \item in CS we actually hit quite often such problems (halting problem)
       
   764   \end{itemize}
       
   765 
       
   766   \end{frame}}
       
   767   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       
   768   
   230 \end{document}
   769 \end{document}
   231 
   770 
   232 %%% Local Variables:  
   771 %%% Local Variables:  
   233 %%% mode: latex
   772 %%% mode: latex
   234 %%% TeX-master: t
   773 %%% TeX-master: t