| 
     1   | 
         | 
     2 def zero(x) = 0;  | 
         | 
     3   | 
         | 
     4 def suc(x) = x + 1;  | 
         | 
     5   | 
         | 
     6 def pred(x) =  | 
         | 
     7   if x == 0 then x else x - 1;  | 
         | 
     8   | 
         | 
     9 def add(x, y) =  | 
         | 
    10   if x == 0 then y else suc(add(x - 1, y));  | 
         | 
    11   | 
         | 
    12 def mult(x, y) =  | 
         | 
    13   if x == 0 then 0 else add(y, mult(x - 1, y));  | 
         | 
    14   | 
         | 
    15 def pow(x, y) =  | 
         | 
    16   if y == 0 then 1 else mult(x, pow(x, y - 1));  | 
         | 
    17   | 
         | 
    18 def fib(n) = if n == 0 then 0   | 
         | 
    19              else if n == 1 then 1   | 
         | 
    20              else fib(n - 1) + fib(n - 2);  | 
         | 
    21   | 
         | 
    22 def fact(n) =  | 
         | 
    23   if n == 0 then 1 else n * fact(n - 1);  | 
         | 
    24   | 
         | 
    25 def ack(m, n) = if m == 0 then n + 1  | 
         | 
    26                 else if n == 0 then ack(m - 1, 1)  | 
         | 
    27                 else ack(m - 1, ack(m, n - 1));  | 
         | 
    28   | 
         | 
    29 def stack_test(x) = x + 1 + 2 + 3 + 4 + 5;  | 
         | 
    30   | 
         | 
    31 def div(x, y) = x / y;   //integer division  | 
         | 
    32   | 
         | 
    33 def rem(x, y) = x % y;   //remainder  | 
         | 
    34   | 
         | 
    35 def gcd(a, b) =  | 
         | 
    36   if b == 0 then a else gcd(b, a % b);  | 
         | 
    37   | 
         | 
    38 def is_prime_aux(n, i) =   | 
         | 
    39   if n % i == 0 then 0  | 
         | 
    40   else if (i * i) <= n then is_prime_aux(n, i + 1)    | 
         | 
    41   else 1;  | 
         | 
    42   | 
         | 
    43 def is_prime(n) = if n == 2 then 1 else is_prime_aux(n, 2);  | 
         | 
    44   | 
         | 
    45 def primes(n) =   | 
         | 
    46   if n == 0 then 0  | 
         | 
    47   else if is_prime(n) == 1 then (write n; primes(n - 1))   | 
         | 
    48   else primes(n - 1);  | 
         | 
    49   | 
         | 
    50 def is_collatz(n) =  | 
         | 
    51   if n == 1 then 1  | 
         | 
    52   else if n % 2 == 0 then is_collatz(n / 2)  | 
         | 
    53   else is_collatz(3 * n + 1);    | 
         | 
    54   | 
         | 
    55 def collatz_aux(n, i) =   | 
         | 
    56   if i > n then 0  | 
         | 
    57   else if is_collatz(i) == 1 then (write i; collatz_aux(n, i + 1))   | 
         | 
    58   else collatz_aux(n, i + 1);  | 
         | 
    59   | 
         | 
    60 def collatz(n) = collatz_aux(n, 1);  | 
         | 
    61   | 
         | 
    62 def facT(n, acc) =  | 
         | 
    63   if n == 0 then acc else facT(n - 1, n * acc);  | 
         | 
    64   | 
         | 
    65   | 
         | 
    66 //zero(3)  | 
         | 
    67 //suc(8)  | 
         | 
    68 //pred(7)  | 
         | 
    69 //write(add(3, 4))  | 
         | 
    70 //mult(4,5)  | 
         | 
    71 //pow(2, 3)  | 
         | 
    72 //fib(20)  | 
         | 
    73 //(write(fact(5)) ; fact(6))  | 
         | 
    74 //(write(1) ; 2)  | 
         | 
    75 //write(ack(3, 12))   // for tail-rec test  | 
         | 
    76 //stack_test(0)  | 
         | 
    77 //(write (div(11, 3)); rem(11, 3))  | 
         | 
    78 //gcd(54, 24)  | 
         | 
    79 //is_prime(2)  | 
         | 
    80 primes(1000)  | 
         | 
    81 //primes(1000000)  | 
         | 
    82 //collatz(4000)  | 
         | 
    83 //collatz(5000)  | 
         | 
    84 //facT(6, 1)  | 
         | 
    85   |