|      1  |         | 
|      2 def zero(x) = 0; |         | 
|      3  |         | 
|      4 def suc(x) = x + 1; |         | 
|      5  |         | 
|      6 def pred(x) = |         | 
|      7   if x == 0 then x else x - 1; |         | 
|      8  |         | 
|      9 def add(x, y) = |         | 
|     10   if x == 0 then y else suc(add(x - 1, y)); |         | 
|     11  |         | 
|     12 def mult(x, y) = |         | 
|     13   if x == 0 then 0 else add(y, mult(x - 1, y)); |         | 
|     14  |         | 
|     15 def pow(x, y) = |         | 
|     16   if y == 0 then 1 else mult(x, pow(x, y - 1)); |         | 
|     17  |         | 
|     18 def fib(n) = if n == 0 then 0  |         | 
|     19              else if n == 1 then 1  |         | 
|     20              else fib(n - 1) + fib(n - 2); |         | 
|     21  |         | 
|     22 def fact(n) = |         | 
|     23   if n == 0 then 1 else n * fact(n - 1); |         | 
|     24  |         | 
|     25 def ack(m, n) = if m == 0 then n + 1 |         | 
|     26                 else if n == 0 then ack(m - 1, 1) |         | 
|     27                 else ack(m - 1, ack(m, n - 1)); |         | 
|     28  |         | 
|     29 def stack_test(x) = x + 1 + 2 + 3 + 4 + 5; |         | 
|     30  |         | 
|     31 def div(x, y) = x / y;   //integer division |         | 
|     32  |         | 
|     33 def rem(x, y) = x % y;   //remainder |         | 
|     34  |         | 
|     35 def gcd(a, b) = |         | 
|     36   if b == 0 then a else gcd(b, a % b); |         | 
|     37  |         | 
|     38 def is_prime_aux(n, i) =  |         | 
|     39   if n % i == 0 then 0 |         | 
|     40   else if (i * i) <= n then is_prime_aux(n, i + 1)   |         | 
|     41   else 1; |         | 
|     42  |         | 
|     43 def is_prime(n) = if n == 2 then 1 else is_prime_aux(n, 2); |         | 
|     44  |         | 
|     45 def primes(n) =  |         | 
|     46   if n == 0 then 0 |         | 
|     47   else if is_prime(n) == 1 then (write n; primes(n - 1))  |         | 
|     48   else primes(n - 1); |         | 
|     49  |         | 
|     50 def is_collatz(n) = |         | 
|     51   if n == 1 then 1 |         | 
|     52   else if n % 2 == 0 then is_collatz(n / 2) |         | 
|     53   else is_collatz(3 * n + 1);   |         | 
|     54  |         | 
|     55 def collatz_aux(n, i) =  |         | 
|     56   if i > n then 0 |         | 
|     57   else if is_collatz(i) == 1 then (write i; collatz_aux(n, i + 1))  |         | 
|     58   else collatz_aux(n, i + 1); |         | 
|     59  |         | 
|     60 def collatz(n) = collatz_aux(n, 1); |         | 
|     61  |         | 
|     62 def facT(n, acc) = |         | 
|     63   if n == 0 then acc else facT(n - 1, n * acc); |         | 
|     64  |         | 
|     65  |         | 
|     66 //zero(3) |         | 
|     67 //suc(8) |         | 
|     68 //pred(7) |         | 
|     69 //write(add(3, 4)) |         | 
|     70 //mult(4,5) |         | 
|     71 //pow(2, 3) |         | 
|     72 //fib(20) |         | 
|     73 //(write(fact(5)) ; fact(6)) |         | 
|     74 //(write(1) ; 2) |         | 
|     75 //write(ack(3, 12))   // for tail-rec test |         | 
|     76 //stack_test(0) |         | 
|     77 //(write (div(11, 3)); rem(11, 3)) |         | 
|     78 //gcd(54, 24) |         | 
|     79 //is_prime(2) |         | 
|     80 primes(1000) |         | 
|     81 //primes(1000000) |         | 
|     82 //collatz(4000) |         | 
|     83 //collatz(5000) |         | 
|     84 //facT(6, 1) |         | 
|     85  |         |