| 
     1 // A simple lexer inspired by work of Sulzmann & Lu  | 
         | 
     2 //==================================================  | 
         | 
     3   | 
         | 
     4   | 
         | 
     5 import scala.language.implicitConversions      | 
         | 
     6 import scala.language.reflectiveCalls  | 
         | 
     7   | 
         | 
     8 // regular expressions including records  | 
         | 
     9 abstract class Rexp   | 
         | 
    10 case object ZERO extends Rexp  | 
         | 
    11 case object ONE extends Rexp  | 
         | 
    12 case class CHAR(c: Char) extends Rexp  | 
         | 
    13 case class ALT(r1: Rexp, r2: Rexp) extends Rexp   | 
         | 
    14 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp   | 
         | 
    15 case class STAR(r: Rexp) extends Rexp   | 
         | 
    16 case class RECD(x: String, r: Rexp) extends Rexp  | 
         | 
    17     | 
         | 
    18 // values    | 
         | 
    19 abstract class Val  | 
         | 
    20 case object Empty extends Val  | 
         | 
    21 case class Chr(c: Char) extends Val  | 
         | 
    22 case class Sequ(v1: Val, v2: Val) extends Val  | 
         | 
    23 case class Left(v: Val) extends Val  | 
         | 
    24 case class Right(v: Val) extends Val  | 
         | 
    25 case class Stars(vs: List[Val]) extends Val  | 
         | 
    26 case class Rec(x: String, v: Val) extends Val  | 
         | 
    27      | 
         | 
    28 // some convenience for typing in regular expressions  | 
         | 
    29 def charlist2rexp(s : List[Char]): Rexp = s match { | 
         | 
    30   case Nil => ONE  | 
         | 
    31   case c::Nil => CHAR(c)  | 
         | 
    32   case c::s => SEQ(CHAR(c), charlist2rexp(s))  | 
         | 
    33 }  | 
         | 
    34 implicit def string2rexp(s : String) : Rexp =   | 
         | 
    35   charlist2rexp(s.toList)  | 
         | 
    36   | 
         | 
    37 implicit def RexpOps(r: Rexp) = new { | 
         | 
    38   def | (s: Rexp) = ALT(r, s)  | 
         | 
    39   def % = STAR(r)  | 
         | 
    40   def ~ (s: Rexp) = SEQ(r, s)  | 
         | 
    41 }  | 
         | 
    42   | 
         | 
    43 implicit def stringOps(s: String) = new { | 
         | 
    44   def | (r: Rexp) = ALT(s, r)  | 
         | 
    45   def | (r: String) = ALT(s, r)  | 
         | 
    46   def % = STAR(s)  | 
         | 
    47   def ~ (r: Rexp) = SEQ(s, r)  | 
         | 
    48   def ~ (r: String) = SEQ(s, r)  | 
         | 
    49   def $ (r: Rexp) = RECD(s, r)  | 
         | 
    50 }  | 
         | 
    51   | 
         | 
    52 def nullable(r: Rexp) : Boolean = r match { | 
         | 
    53   case ZERO => false  | 
         | 
    54   case ONE => true  | 
         | 
    55   case CHAR(_) => false  | 
         | 
    56   case ALT(r1, r2) => nullable(r1) || nullable(r2)  | 
         | 
    57   case SEQ(r1, r2) => nullable(r1) && nullable(r2)  | 
         | 
    58   case STAR(_) => true  | 
         | 
    59   case RECD(_, r1) => nullable(r1)  | 
         | 
    60 }  | 
         | 
    61   | 
         | 
    62 def der(c: Char, r: Rexp) : Rexp = r match { | 
         | 
    63   case ZERO => ZERO  | 
         | 
    64   case ONE => ZERO  | 
         | 
    65   case CHAR(d) => if (c == d) ONE else ZERO  | 
         | 
    66   case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))  | 
         | 
    67   case SEQ(r1, r2) =>   | 
         | 
    68     if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))  | 
         | 
    69     else SEQ(der(c, r1), r2)  | 
         | 
    70   case STAR(r) => SEQ(der(c, r), STAR(r))  | 
         | 
    71   case RECD(_, r1) => der(c, r1)  | 
         | 
    72 }  | 
         | 
    73   | 
         | 
    74   | 
         | 
    75 // extracts a string from value  | 
         | 
    76 def flatten(v: Val) : String = v match { | 
         | 
    77   case Empty => ""  | 
         | 
    78   case Chr(c) => c.toString  | 
         | 
    79   case Left(v) => flatten(v)  | 
         | 
    80   case Right(v) => flatten(v)  | 
         | 
    81   case Sequ(v1, v2) => flatten(v1) + flatten(v2)  | 
         | 
    82   case Stars(vs) => vs.map(flatten).mkString  | 
         | 
    83   case Rec(_, v) => flatten(v)  | 
         | 
    84 }  | 
         | 
    85   | 
         | 
    86   | 
         | 
    87 // extracts an environment from a value;  | 
         | 
    88 // used for tokenise a string  | 
         | 
    89 def env(v: Val) : List[(String, String)] = v match { | 
         | 
    90   case Empty => Nil  | 
         | 
    91   case Chr(c) => Nil  | 
         | 
    92   case Left(v) => env(v)  | 
         | 
    93   case Right(v) => env(v)  | 
         | 
    94   case Sequ(v1, v2) => env(v1) ::: env(v2)  | 
         | 
    95   case Stars(vs) => vs.flatMap(env)  | 
         | 
    96   case Rec(x, v) => (x, flatten(v))::env(v)  | 
         | 
    97 }  | 
         | 
    98   | 
         | 
    99 // The Injection Part of the lexer  | 
         | 
   100   | 
         | 
   101 def mkeps(r: Rexp) : Val = r match { | 
         | 
   102   case ONE => Empty  | 
         | 
   103   case ALT(r1, r2) =>   | 
         | 
   104     if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))  | 
         | 
   105   case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))  | 
         | 
   106   case STAR(r) => Stars(Nil)  | 
         | 
   107   case RECD(x, r) => Rec(x, mkeps(r))  | 
         | 
   108 }  | 
         | 
   109   | 
         | 
   110 def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match { | 
         | 
   111   case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)  | 
         | 
   112   case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)  | 
         | 
   113   case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)  | 
         | 
   114   case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))  | 
         | 
   115   case (ALT(r1, r2), Left(v1)) => Left(inj(r1, c, v1))  | 
         | 
   116   case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2))  | 
         | 
   117   case (CHAR(d), Empty) => Chr(c)   | 
         | 
   118   case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))  | 
         | 
   119 }  | 
         | 
   120   | 
         | 
   121 // some "rectification" functions for simplification  | 
         | 
   122 def F_ID(v: Val): Val = v  | 
         | 
   123 def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))  | 
         | 
   124 def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))  | 
         | 
   125 def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { | 
         | 
   126   case Right(v) => Right(f2(v))  | 
         | 
   127   case Left(v) => Left(f1(v))  | 
         | 
   128 }  | 
         | 
   129 def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { | 
         | 
   130   case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))  | 
         | 
   131 }  | 
         | 
   132 def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) =   | 
         | 
   133   (v:Val) => Sequ(f1(Empty), f2(v))  | 
         | 
   134 def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) =   | 
         | 
   135   (v:Val) => Sequ(f1(v), f2(Empty))  | 
         | 
   136 def F_RECD(f: Val => Val) = (v:Val) => v match { | 
         | 
   137   case Rec(x, v) => Rec(x, f(v))  | 
         | 
   138 }  | 
         | 
   139 def F_ERROR(v: Val): Val = throw new Exception("error") | 
         | 
   140   | 
         | 
   141 def simp(r: Rexp): (Rexp, Val => Val) = r match { | 
         | 
   142   case ALT(r1, r2) => { | 
         | 
   143     val (r1s, f1s) = simp(r1)  | 
         | 
   144     val (r2s, f2s) = simp(r2)  | 
         | 
   145     (r1s, r2s) match { | 
         | 
   146       case (ZERO, _) => (r2s, F_RIGHT(f2s))  | 
         | 
   147       case (_, ZERO) => (r1s, F_LEFT(f1s))  | 
         | 
   148       case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))  | 
         | 
   149                 else (ALT (r1s, r2s), F_ALT(f1s, f2s))   | 
         | 
   150     }  | 
         | 
   151   }  | 
         | 
   152   case SEQ(r1, r2) => { | 
         | 
   153     val (r1s, f1s) = simp(r1)  | 
         | 
   154     val (r2s, f2s) = simp(r2)  | 
         | 
   155     (r1s, r2s) match { | 
         | 
   156       case (ZERO, _) => (ZERO, F_ERROR)  | 
         | 
   157       case (_, ZERO) => (ZERO, F_ERROR)  | 
         | 
   158       case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))  | 
         | 
   159       case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))  | 
         | 
   160       case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))  | 
         | 
   161     }  | 
         | 
   162   }  | 
         | 
   163   case r => (r, F_ID)  | 
         | 
   164 }  | 
         | 
   165   | 
         | 
   166 // lexing functions including simplification  | 
         | 
   167 def lex_simp(r: Rexp, s: List[Char]) : Val = s match { | 
         | 
   168   case Nil => if (nullable(r)) mkeps(r) else   | 
         | 
   169     { throw new Exception("lexing error") }  | 
         | 
   170   case c::cs => { | 
         | 
   171     val (r_simp, f_simp) = simp(der(c, r))  | 
         | 
   172     inj(r, c, f_simp(lex_simp(r_simp, cs)))  | 
         | 
   173   }  | 
         | 
   174 }  | 
         | 
   175   | 
         | 
   176 def lexing_simp(r: Rexp, s: String) =   | 
         | 
   177   env(lex_simp(r, s.toList))  | 
         | 
   178   | 
         | 
   179   | 
         | 
   180 // The Lexing Rules for the Fun Language  | 
         | 
   181   | 
         | 
   182 def PLUS(r: Rexp) = r ~ r.%  | 
         | 
   183   | 
         | 
   184 def Range(s : List[Char]) : Rexp = s match { | 
         | 
   185   case Nil => ZERO  | 
         | 
   186   case c::Nil => CHAR(c)  | 
         | 
   187   case c::s => ALT(CHAR(c), Range(s))  | 
         | 
   188 }  | 
         | 
   189 def RANGE(s: String) = Range(s.toList)  | 
         | 
   190   | 
         | 
   191 val SYM = RANGE("ABCDEFGHIJKLMNOPQRSTUVXYZabcdefghijklmnopqrstuvwxyz_") | 
         | 
   192 val DIGIT = RANGE("0123456789") | 
         | 
   193 val ID = SYM ~ (SYM | DIGIT).%   | 
         | 
   194 val NUM = PLUS(DIGIT)  | 
         | 
   195 val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write"   | 
         | 
   196 val SEMI: Rexp = ";"  | 
         | 
   197 val OP: Rexp = ":=" | "=" | "-" | "+" | "*" | "!=" | "<" | ">"  | 
         | 
   198 val WHITESPACE = PLUS(" " | "\n" | "\t") | 
         | 
   199 val RPAREN: Rexp = "{" | 
         | 
   200 val LPAREN: Rexp = "}"  | 
         | 
   201 val STRING: Rexp = "\"" ~ SYM.% ~ "\""  | 
         | 
   202   | 
         | 
   203   | 
         | 
   204 val WHILE_REGS = (("k" $ KEYWORD) |  | 
         | 
   205                   ("i" $ ID) |  | 
         | 
   206                   ("o" $ OP) |  | 
         | 
   207                   ("n" $ NUM) |  | 
         | 
   208                   ("s" $ SEMI) |  | 
         | 
   209                   ("str" $ STRING) | | 
         | 
   210                   ("p" $ (LPAREN | RPAREN)) |  | 
         | 
   211                   ("w" $ WHITESPACE)).% | 
         | 
   212   | 
         | 
   213   | 
         | 
   214 // Two Simple While Tests  | 
         | 
   215 //========================  | 
         | 
   216   | 
         | 
   217 println("test: read n") | 
         | 
   218   | 
         | 
   219 val prog0 = """read n"""  | 
         | 
   220 println(lexing_simp(WHILE_REGS, prog0))  | 
         | 
   221   | 
         | 
   222 println("test: read  n; write n ") | 
         | 
   223   | 
         | 
   224 val prog1 = """read  n; write n"""  | 
         | 
   225 println(lexing_simp(WHILE_REGS, prog1))  | 
         | 
   226   | 
         | 
   227   | 
         | 
   228 // Bigger Tests  | 
         | 
   229 //==============  | 
         | 
   230   | 
         | 
   231 // escapes strings and prints them out as "", "\n" and so on  | 
         | 
   232 def esc(raw: String): String = { | 
         | 
   233   import scala.reflect.runtime.universe._  | 
         | 
   234   Literal(Constant(raw)).toString  | 
         | 
   235 }  | 
         | 
   236   | 
         | 
   237 def escape(tks: List[(String, String)]) =  | 
         | 
   238   tks.map{ case (s1, s2) => (s1, esc(s2))} | 
         | 
   239   | 
         | 
   240 val prog2 = """  | 
         | 
   241 write "Fib";  | 
         | 
   242 read n;  | 
         | 
   243 minus1 := 0;  | 
         | 
   244 minus2 := 1;  | 
         | 
   245 while n > 0 do { | 
         | 
   246   temp := minus2;  | 
         | 
   247   minus2 := minus1 + minus2;  | 
         | 
   248   minus1 := temp;  | 
         | 
   249   n := n - 1  | 
         | 
   250 };  | 
         | 
   251 write "Result";  | 
         | 
   252 write minus2  | 
         | 
   253 """  | 
         | 
   254   | 
         | 
   255 println("lexing Fib") | 
         | 
   256 println(escape(lexing_simp(WHILE_REGS, prog2)).mkString("\n")) | 
         | 
   257   | 
         | 
   258   | 
         | 
   259   | 
         | 
   260 val prog3 = """  | 
         | 
   261 start := 1000;  | 
         | 
   262 x := start;  | 
         | 
   263 y := start;  | 
         | 
   264 z := start;  | 
         | 
   265 while 0 < x do { | 
         | 
   266  while 0 < y do { | 
         | 
   267   while 0 < z do { | 
         | 
   268     z := z - 1  | 
         | 
   269   };  | 
         | 
   270   z := start;  | 
         | 
   271   y := y - 1  | 
         | 
   272  };       | 
         | 
   273  y := start;  | 
         | 
   274  x := x - 1  | 
         | 
   275 }  | 
         | 
   276 """  | 
         | 
   277   | 
         | 
   278 println("lexing Loops") | 
         | 
   279 println(escape(lexing_simp(WHILE_REGS, prog3)).mkString("\n")) | 
         | 
   280   |