equal
deleted
inserted
replaced
105 \item[$\bullet$] $b$ |
105 \item[$\bullet$] $b$ |
106 \item[$\bullet$] $ab$ |
106 \item[$\bullet$] $ab$ |
107 \item[$\bullet$] $ba$ |
107 \item[$\bullet$] $ba$ |
108 \item[$\bullet$] $bb$ |
108 \item[$\bullet$] $bb$ |
109 \item[$\bullet$] $baa$ |
109 \item[$\bullet$] $baa$ |
110 \end{itemize} |
110 \end{itemize} |
|
111 |
|
112 \item Suppose the following context-free grammar |
|
113 |
|
114 \begin{plstx}[margin=1cm] |
|
115 : \meta{S\/} ::= a\cdot \meta{S\/}\cdot a\;\mid\; |
|
116 b\cdot \meta{S\/}\cdot b\;\mid\; \epsilon\\ |
|
117 \end{plstx} |
|
118 |
|
119 Describe which language is generated by this grammar. |
|
120 |
111 |
121 |
112 |
122 |
113 \item {\bf(Optional)} Recall the definitions for $Der$ and $der$ |
123 \item {\bf(Optional)} Recall the definitions for $Der$ and $der$ |
114 from the lectures. Prove by induction on $r$ the |
124 from the lectures. Prove by induction on $r$ the |
115 property that |
125 property that |