hws/Der.tex
changeset 980 0c491eff5b01
parent 943 5365ef60707e
equal deleted inserted replaced
979:398a37bc784c 980:0c491eff5b01
     1 \documentclass{article}
     1 \documentclass{article}
     2 \usepackage{../style}
     2 \usepackage{../style}
     3 \usepackage{../graphics}
     3 \usepackage{../graphics}
     4 
     4 
       
     5 \title{Derivative for the NOT-Regular Expression}
       
     6 
     5 \begin{document}
     7 \begin{document}
       
     8 \maketitle
       
     9 \begin{abstract}
       
    10   \noindent
       
    11   This short note explains why the derivative for the NOT-regular
       
    12   expression is defined as
       
    13   \[
       
    14   der\,c(\sim r) \;\dn\; \sim (der\,c\,r)
       
    15   \]
       
    16   The explanation goes via complement sets, the semantic derivative (\textit{Der})
       
    17   and how the derivative relates to the semantic derivative.
       
    18 \end{abstract}
     6 
    19 
     7 \section*{Complement Sets}
    20 \section*{Complement Sets}
     8 
    21 
     9 Consider the following picture:
    22 To start with, consider the following picture:
    10 
    23 
    11 \begin{center}
    24 \begin{center}
    12 \begin{tikzpicture}[fill=gray]
    25 \begin{tikzpicture}[fill=gray]
    13 % left hand
    26 % left hand
    14 \scope
    27 \scope
    21 \end{tikzpicture}
    34 \end{tikzpicture}
    22 \end{center}
    35 \end{center}
    23 
    36 
    24 
    37 
    25 \noindent
    38 \noindent
    26 where $\Sigma^*$ is in our case the set of all strings (what follows
    39 where $\Sigma^*$ is in our case the set of all strings (what follows in this section
    27 also holds for any kind of ``domain'', like the set of all integers or
    40 also holds for any kind of ``domain'', like the set of all integers or
    28 the set of all binary trees, etc). Let us assume $P(s)$ is a property that
    41 the set of all binary trees, etc). Let us assume $P(s)$ is a property that
    29 is about strings, for example $P(s)$ could be ``the string $s$ has
    42 is about strings, for example $P(s)$ could be ``the string $s$ has
    30 an even length'', or ``the string $s$ starts with the letter
    43 an even length'', or ``the string $s$ starts with the letter
    31 \texttt{a}''. Every such property carves out a subset of strings from
    44 \texttt{a}''. Every such property carves out a subset of strings from
   229 \end{tabular}    
   242 \end{tabular}    
   230 \end{center}
   243 \end{center}
   231 
   244 
   232 \noindent
   245 \noindent
   233 That means we have established the property of derivatives in the $\sim r$-case\dots{}yippee~;o)
   246 That means we have established the property of derivatives in the $\sim r$-case\dots{}yippee~;o)
   234 
   247 \medskip
       
   248 
       
   249 \noindent
       
   250 The conclusion is: if we want the property $L(der\,c\,r) = Der\,c\,(L(r))$ to hold and the
       
   251 semantics of $\sim r$ is defined as $\overline{L(r)}$, then the definition for the derivative
       
   252 for the NOT-regular expression must be:
       
   253 \[
       
   254 der\,c(\sim r) \;\dn\; \sim (der\,c\,r)
       
   255 \]  
   235 \end{document}
   256 \end{document}
   236 
   257 
   237 %%% Local Variables: 
   258 %%% Local Variables: 
   238 %%% mode: latex
   259 %%% mode: latex
   239 %%% TeX-master: t
   260 %%% TeX-master: t