progs/lexer.scala
changeset 642 064afa8fc1d9
parent 625 6709fa87410b
child 670 551d018cbbac
equal deleted inserted replaced
641:1062a9512e79 642:064afa8fc1d9
     1 // A Simple Lexer according to Sulzmann & Lu
     1 // A simple lexer inspired by work of Sulzmann & Lu
       
     2 //==================================================
       
     3 
     2 
     4 
     3 import scala.language.implicitConversions    
     5 import scala.language.implicitConversions    
     4 import scala.language.reflectiveCalls
     6 import scala.language.reflectiveCalls
     5 
     7 
       
     8 // regular expressions including records
     6 abstract class Rexp 
     9 abstract class Rexp 
     7 case object ZERO extends Rexp
    10 case object ZERO extends Rexp
     8 case object ONE extends Rexp
    11 case object ONE extends Rexp
     9 case class CHAR(c: Char) extends Rexp
    12 case class CHAR(c: Char) extends Rexp
    10 case class ALT(r1: Rexp, r2: Rexp) extends Rexp 
    13 case class ALT(r1: Rexp, r2: Rexp) extends Rexp 
    11 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp 
    14 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp 
    12 case class STAR(r: Rexp) extends Rexp 
    15 case class STAR(r: Rexp) extends Rexp 
    13 case class RECD(x: String, r: Rexp) extends Rexp
    16 case class RECD(x: String, r: Rexp) extends Rexp
    14    
    17   
       
    18 // values  
    15 abstract class Val
    19 abstract class Val
    16 case object Empty extends Val
    20 case object Empty extends Val
    17 case class Chr(c: Char) extends Val
    21 case class Chr(c: Char) extends Val
    18 case class Sequ(v1: Val, v2: Val) extends Val
    22 case class Sequ(v1: Val, v2: Val) extends Val
    19 case class Left(v: Val) extends Val
    23 case class Left(v: Val) extends Val
    43   def ~ (r: Rexp) = SEQ(s, r)
    47   def ~ (r: Rexp) = SEQ(s, r)
    44   def ~ (r: String) = SEQ(s, r)
    48   def ~ (r: String) = SEQ(s, r)
    45   def $ (r: Rexp) = RECD(s, r)
    49   def $ (r: Rexp) = RECD(s, r)
    46 }
    50 }
    47 
    51 
    48 // A test for more conveninet syntax
    52 def nullable(r: Rexp) : Boolean = r match {
    49 val re : Rexp = ("ab" | "a") ~ ("b" | ONE)
       
    50 
       
    51 // the nullable function: tests whether the regular 
       
    52 // expression can recognise the empty string
       
    53 def nullable (r: Rexp) : Boolean = r match {
       
    54   case ZERO => false
    53   case ZERO => false
    55   case ONE => true
    54   case ONE => true
    56   case CHAR(_) => false
    55   case CHAR(_) => false
    57   case ALT(r1, r2) => nullable(r1) || nullable(r2)
    56   case ALT(r1, r2) => nullable(r1) || nullable(r2)
    58   case SEQ(r1, r2) => nullable(r1) && nullable(r2)
    57   case SEQ(r1, r2) => nullable(r1) && nullable(r2)
    59   case STAR(_) => true
    58   case STAR(_) => true
    60   case RECD(_, r1) => nullable(r1)
    59   case RECD(_, r1) => nullable(r1)
    61 }
    60 }
    62 
    61 
    63 // the derivative of a regular expression w.r.t. a character
    62 def der(c: Char, r: Rexp) : Rexp = r match {
    64 def der (c: Char, r: Rexp) : Rexp = r match {
       
    65   case ZERO => ZERO
    63   case ZERO => ZERO
    66   case ONE => ZERO
    64   case ONE => ZERO
    67   case CHAR(d) => if (c == d) ONE else ZERO
    65   case CHAR(d) => if (c == d) ONE else ZERO
    68   case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
    66   case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
    69   case SEQ(r1, r2) => 
    67   case SEQ(r1, r2) => 
    71     else SEQ(der(c, r1), r2)
    69     else SEQ(der(c, r1), r2)
    72   case STAR(r) => SEQ(der(c, r), STAR(r))
    70   case STAR(r) => SEQ(der(c, r), STAR(r))
    73   case RECD(_, r1) => der(c, r1)
    71   case RECD(_, r1) => der(c, r1)
    74 }
    72 }
    75 
    73 
    76 // the derivative w.r.t. a string (iterates der)
       
    77 def ders (s: List[Char], r: Rexp) : Rexp = s match {
       
    78   case Nil => r
       
    79   case c::s => ders(s, der(c, r))
       
    80 }
       
    81 
    74 
    82 // extracts a string from value
    75 // extracts a string from value
    83 def flatten(v: Val) : String = v match {
    76 def flatten(v: Val) : String = v match {
    84   case Empty => ""
    77   case Empty => ""
    85   case Chr(c) => c.toString
    78   case Chr(c) => c.toString
    88   case Sequ(v1, v2) => flatten(v1) + flatten(v2)
    81   case Sequ(v1, v2) => flatten(v1) + flatten(v2)
    89   case Stars(vs) => vs.map(flatten).mkString
    82   case Stars(vs) => vs.map(flatten).mkString
    90   case Rec(_, v) => flatten(v)
    83   case Rec(_, v) => flatten(v)
    91 }
    84 }
    92 
    85 
       
    86 
    93 // extracts an environment from a value;
    87 // extracts an environment from a value;
    94 // used for lexing a string
    88 // used for tokenise a string
    95 def env(v: Val) : List[(String, String)] = v match {
    89 def env(v: Val) : List[(String, String)] = v match {
    96   case Empty => Nil
    90   case Empty => Nil
    97   case Chr(c) => Nil
    91   case Chr(c) => Nil
    98   case Left(v) => env(v)
    92   case Left(v) => env(v)
    99   case Right(v) => env(v)
    93   case Right(v) => env(v)
   100   case Sequ(v1, v2) => env(v1) ::: env(v2)
    94   case Sequ(v1, v2) => env(v1) ::: env(v2)
   101   case Stars(vs) => vs.flatMap(env)
    95   case Stars(vs) => vs.flatMap(env)
   102   case Rec(x, v) => (x, flatten(v))::env(v)
    96   case Rec(x, v) => (x, flatten(v))::env(v)
   103 }
    97 }
   104 
    98 
   105 // The Injection Part of the Lexer
    99 // The Injection Part of the lexer
   106 
   100 
   107 // calculates a value for how a nullable regex 
       
   108 // matches the empty string 
       
   109 def mkeps(r: Rexp) : Val = r match {
   101 def mkeps(r: Rexp) : Val = r match {
   110   case ONE => Empty
   102   case ONE => Empty
   111   case ALT(r1, r2) => 
   103   case ALT(r1, r2) => 
   112     if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
   104     if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
   113   case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
   105   case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
   114   case STAR(r) => Stars(Nil)
   106   case STAR(r) => Stars(Nil)
   115   case RECD(x, r) => Rec(x, mkeps(r))
   107   case RECD(x, r) => Rec(x, mkeps(r))
   116 }
   108 }
   117 
   109 
   118 // injects back a character into a value
       
   119 def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
   110 def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
   120   case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
   111   case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
   121   case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
   112   case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
   122   case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
   113   case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
   123   case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
   114   case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
   125   case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2))
   116   case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2))
   126   case (CHAR(d), Empty) => Chr(c) 
   117   case (CHAR(d), Empty) => Chr(c) 
   127   case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
   118   case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
   128 }
   119 }
   129 
   120 
   130 // the main lexing function (produces a value)
       
   131 def lex(r: Rexp, s: List[Char]) : Val = s match {
       
   132   case Nil => if (nullable(r)) mkeps(r) 
       
   133               else throw new Exception("Not matched")
       
   134   case c::cs => inj(r, c, lex(der(c, r), cs))
       
   135 }
       
   136 
       
   137 def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
       
   138 
       
   139 // a simple test for extracting an environment
       
   140 val re1 : Rexp = ("first" $ ("a" | "ab")) ~ ("second" $ ("b" | ONE))
       
   141 env(lexing(re1, "ab"))
       
   142 
       
   143 // some "rectification" functions for simplification
   121 // some "rectification" functions for simplification
   144 def F_ID(v: Val): Val = v
   122 def F_ID(v: Val): Val = v
   145 def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
   123 def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
   146 def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
   124 def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
   147 def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
   125 def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
   158 def F_RECD(f: Val => Val) = (v:Val) => v match {
   136 def F_RECD(f: Val => Val) = (v:Val) => v match {
   159   case Rec(x, v) => Rec(x, f(v))
   137   case Rec(x, v) => Rec(x, f(v))
   160 }
   138 }
   161 def F_ERROR(v: Val): Val = throw new Exception("error")
   139 def F_ERROR(v: Val): Val = throw new Exception("error")
   162 
   140 
   163 // simplification of regular expressions returns now also 
       
   164 // an rectification function; no simplification under STAR 
       
   165 def simp(r: Rexp): (Rexp, Val => Val) = r match {
   141 def simp(r: Rexp): (Rexp, Val => Val) = r match {
   166   case ALT(r1, r2) => {
   142   case ALT(r1, r2) => {
   167     val (r1s, f1s) = simp(r1)
   143     val (r1s, f1s) = simp(r1)
   168     val (r2s, f2s) = simp(r2)
   144     val (r2s, f2s) = simp(r2)
   169     (r1s, r2s) match {
   145     (r1s, r2s) match {
   191   case r => (r, F_ID)
   167   case r => (r, F_ID)
   192 }
   168 }
   193 
   169 
   194 // lexing functions including simplification
   170 // lexing functions including simplification
   195 def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
   171 def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
   196   case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
   172   case Nil => if (nullable(r)) mkeps(r) else 
       
   173     { throw new Exception("lexing error") } 
   197   case c::cs => {
   174   case c::cs => {
   198     val (r_simp, f_simp) = simp(der(c, r))
   175     val (r_simp, f_simp) = simp(der(c, r))
   199     inj(r, c, f_simp(lex_simp(r_simp, cs)))
   176     inj(r, c, f_simp(lex_simp(r_simp, cs)))
   200   }
   177   }
   201 }
   178 }
   202 
   179 
   203 def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)
   180 def lexing_simp(r: Rexp, s: String) = 
   204 
   181   env(lex_simp(r, s.toList))
   205 lexing_simp(("a" | "ab") ~ ("b" | ""), "ab")
   182 
   206 
   183 
   207 // The Lexing Rules for a Small While Language
   184 // The Lexing Rules for the Fun Language
   208 
   185 
   209 def PLUS(r: Rexp) = r ~ r.%
   186 def PLUS(r: Rexp) = r ~ r.%
   210 
   187 
   211 val SYM = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
   188 def Range(s : List[Char]) : Rexp = s match {
   212 val DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
   189   case Nil => ZERO
       
   190   case c::Nil => CHAR(c)
       
   191   case c::s => ALT(CHAR(c), Range(s))
       
   192 }
       
   193 def RANGE(s: String) = Range(s.toList)
       
   194 
       
   195 val SYM = RANGE("ABCDEFGHIJKLMNOPQRSTUVXYZabcdefghijklmnopqrstuvwxyz_")
       
   196 val DIGIT = RANGE("0123456789")
   213 val ID = SYM ~ (SYM | DIGIT).% 
   197 val ID = SYM ~ (SYM | DIGIT).% 
   214 val NUM = PLUS(DIGIT)
   198 val NUM = PLUS(DIGIT)
   215 val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
   199 val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" 
   216 val SEMI: Rexp = ";"
   200 val SEMI: Rexp = ";"
   217 val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
   201 val OP: Rexp = ":=" | "=" | "-" | "+" | "*" | "!=" | "<" | ">"
   218 val WHITESPACE = PLUS(" " | "\n" | "\t")
   202 val WHITESPACE = PLUS(" " | "\n" | "\t")
   219 val RPAREN: Rexp = ")"
   203 val RPAREN: Rexp = "{"
   220 val LPAREN: Rexp = "("
   204 val LPAREN: Rexp = "}"
   221 val BEGIN: Rexp = "{"
       
   222 val END: Rexp = "}"
       
   223 val STRING: Rexp = "\"" ~ SYM.% ~ "\""
   205 val STRING: Rexp = "\"" ~ SYM.% ~ "\""
   224 
   206 
   225 
   207 
   226 val WHILE_REGS = (("k" $ KEYWORD) | 
   208 val WHILE_REGS = (("k" $ KEYWORD) | 
   227                   ("i" $ ID) | 
   209                   ("i" $ ID) | 
   228                   ("o" $ OP) | 
   210                   ("o" $ OP) | 
   229                   ("n" $ NUM) | 
   211                   ("n" $ NUM) | 
   230                   ("s" $ SEMI) | 
   212                   ("s" $ SEMI) | 
   231                   ("str" $ STRING) |
   213                   ("str" $ STRING) |
   232                   ("p" $ (LPAREN | RPAREN)) | 
   214                   ("p" $ (LPAREN | RPAREN)) | 
   233                   ("b" $ (BEGIN | END)) | 
       
   234                   ("w" $ WHITESPACE)).%
   215                   ("w" $ WHITESPACE)).%
   235 
       
   236 //   Testing
       
   237 //============
       
   238 
       
   239 def time[T](code: => T) = {
       
   240   val start = System.nanoTime()
       
   241   val result = code
       
   242   val end = System.nanoTime()
       
   243   println((end - start)/1.0e9)
       
   244   result
       
   245 }
       
   246 
       
   247 val r1 = ("a" | "ab") ~ ("bcd" | "c")
       
   248 println(lexing(r1, "abcd"))
       
   249 
       
   250 val r2 = ("" | "a") ~ ("ab" | "b")
       
   251 println(lexing(r2, "ab"))
       
   252 
   216 
   253 
   217 
   254 // Two Simple While Tests
   218 // Two Simple While Tests
   255 //========================
   219 //========================
   256 println("prog0 test")
   220 
   257 
   221 println("test: read n")
   258 val prog0 = """read if"""
   222 
   259 println(env(lexing_simp(WHILE_REGS, prog0)))
   223 val prog0 = """read n"""
   260 
   224 println(lexing_simp(WHILE_REGS, prog0))
   261 println("prog1 test")
   225 
   262 
   226 println("test: read  n; write n ")
   263 val prog1 = """read  n; write (n)"""
   227 
   264 println(env(lexing_simp(WHILE_REGS, prog1)))
   228 val prog1 = """read  n; write n"""
   265 
   229 println(lexing_simp(WHILE_REGS, prog1))
   266 
   230 
   267 // Bigger Test
   231 
   268 //=============
   232 // Bigger Tests
       
   233 //==============
       
   234 
       
   235 // escapes strings and prints them out as "", "\n" and so on
       
   236 def esc(raw: String): String = {
       
   237   import scala.reflect.runtime.universe._
       
   238   Literal(Constant(raw)).toString
       
   239 }
       
   240 
       
   241 def escape(tks: List[(String, String)]) =
       
   242   tks.map{ case (s1, s2) => (s1, esc(s2))}
   269 
   243 
   270 val prog2 = """
   244 val prog2 = """
   271 write "fib";
   245 write "Fib";
   272 read n;
   246 read n;
   273 minus1 := 0;
   247 minus1 := 0;
   274 minus2 := 1;
   248 minus2 := 1;
   275 while n > 0 do {
   249 while n > 0 do {
   276   temp := minus2;
   250   temp := minus2;
   277   minus2 := minus1 + minus2;
   251   minus2 := minus1 + minus2;
   278   minus1 := temp;
   252   minus1 := temp;
   279   n := n - 1
   253   n := n - 1
   280 };
   254 };
   281 write "result";
       
   282 write minus2
       
   283 """
       
   284 
       
   285 println("Tokens")
       
   286 println(env(lexing_simp(WHILE_REGS, prog2)))
       
   287 println(env(lexing_simp(WHILE_REGS, prog2)).filterNot{_._1 == "w"}.mkString("\n"))
       
   288 
       
   289 // some more timing tests with
       
   290 // i copies of the program
       
   291 
       
   292 for (i <- 0 to 20 by 10) {
       
   293   print(i.toString + ":  ")
       
   294   time(lexing_simp(WHILE_REGS, prog2 * i))
       
   295 }
       
   296 
       
   297 
       
   298 val fib = """
       
   299 write "Fib";
       
   300 read n;
       
   301 minus1 := 0;
       
   302 minus2 := 1;
       
   303 while n > 0 do {
       
   304 temp := minus2;
       
   305 minus2 := minus1 + minus2;
       
   306 minus1 := temp;
       
   307 n := n - 1
       
   308 };
       
   309 write "Result";
   255 write "Result";
   310 write minus2
   256 write minus2
   311 """
   257 """
   312 
   258 
   313 println(env(lexing_simp(WHILE_REGS, prog2)).filterNot{_._1 == "w"})
   259 println("lexing Fib")
       
   260 println(escape(lexing_simp(WHILE_REGS, prog2)).mkString("\n"))
       
   261 
       
   262 
       
   263 
       
   264 val prog3 = """
       
   265 start := 1000;
       
   266 x := start;
       
   267 y := start;
       
   268 z := start;
       
   269 while 0 < x do {
       
   270  while 0 < y do {
       
   271   while 0 < z do {
       
   272     z := z - 1
       
   273   };
       
   274   z := start;
       
   275   y := y - 1
       
   276  };     
       
   277  y := start;
       
   278  x := x - 1
       
   279 }
       
   280 """
       
   281 
       
   282 println("lexing Loops")
       
   283 println(escape(lexing_simp(WHILE_REGS, prog3)).mkString("\n"))
       
   284