1 // Thompson Construction (Part 2)  | 
         | 
     2   | 
         | 
     3 // some more type abbreviations  | 
         | 
     4 type NFAtrans = (TState, Char) :=> Set[TState]  | 
         | 
     5 type eNFAtrans = (TState, Option[Char]) :=> Set[TState]  | 
         | 
     6   | 
         | 
     7   | 
         | 
     8 // for composing an eNFA transition with a NFA transition  | 
         | 
     9 implicit class RichPF(val f: eNFAtrans) extends AnyVal { | 
         | 
    10   def +++(g: NFAtrans) : eNFAtrans =   | 
         | 
    11   { case (q, None) =>  applyOrElse(f, (q, None))  | 
         | 
    12     case (q, Some(c)) =>   | 
         | 
    13       applyOrElse(f, (q, Some(c))) | applyOrElse(g, (q, c))  }  | 
         | 
    14 }  | 
         | 
    15   | 
         | 
    16 // sequence of two NFAs  | 
         | 
    17 def NFA_SEQ(enfa1: NFAt, enfa2: NFAt) : NFAt = { | 
         | 
    18   val new_delta : eNFAtrans =   | 
         | 
    19     { case (q, None) if enfa1.fins(q) => enfa2.starts } | 
         | 
    20     | 
         | 
    21   eNFA(enfa1.starts, new_delta +++ enfa1.delta +++ enfa2.delta,   | 
         | 
    22        enfa2.fins)  | 
         | 
    23 }  | 
         | 
    24   | 
         | 
    25 // alternative of two NFAs  | 
         | 
    26 def NFA_ALT(enfa1: NFAt, enfa2: NFAt) : NFAt = { | 
         | 
    27   val new_delta : NFAtrans = {  | 
         | 
    28     case (q, c) => applyOrElse(enfa1.delta, (q, c)) |   | 
         | 
    29                    applyOrElse(enfa2.delta, (q, c)) }  | 
         | 
    30   val new_fins = (q: TState) => enfa1.fins(q) || enfa2.fins(q)  | 
         | 
    31   | 
         | 
    32   NFA(enfa1.starts | enfa2.starts, new_delta, new_fins)  | 
         | 
    33 }  | 
         | 
    34   | 
         | 
    35 // star of a NFA  | 
         | 
    36 def NFA_STAR(enfa: NFAt) : NFAt = { | 
         | 
    37   val Q = TState()  | 
         | 
    38   val new_delta : eNFAtrans =   | 
         | 
    39     { case (Q, None) => enfa.starts | 
         | 
    40       case (q, None) if enfa.fins(q) => Set(Q) }  | 
         | 
    41   | 
         | 
    42   eNFA(Set(Q), new_delta +++ enfa.delta, Set(Q))  | 
         | 
    43 }  | 
         |