Compilers and
Formal Languages (2)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS (also homework is there)

Lets Implement an Efficient
Regular Expression Matcher

) gin} i
Graphs: " and strings ¢. . .a

n

30 | —+—Scala V2
g g 25 ¢ —0—Scala V3
g g I
Q Q
£ £
= =

n
5§ I0 15 20 25 30 7 o 5,000 10,000

In the handouts is a similar graph for (¢*)* - 4 and Java 8.

Evil Regular Expressions

e Regular expression Denial of Service (ReDoS)

o Evil regular expressions

o Lln . in}
° (d*)*

o ([a-2]")"
° (d—|-d7'd)*
o (a+a')*

e sometimes also called catastrophic backtracking

Languages

o A Language is a set of strings, for example

{1], bello, foobar,a, abc}

e Concatenation of strings and languages

foo @ bar = foobar
A@B = {5@s, | 5, € ANs, € B}

For example A = {foo,bar}, B = {a,b}

A @B = {fooa, foob, bara, barb}

The Power Operation

o The nth Power of a language:

o def
4° = A[]}
An+1 d:ef A@A”

For example

A+ = A@dA@A@Ad (@{[]})
A = A (@{[]})
4° = {[}}

Homework Question

o Say A = {la], [¢],[c], [d]}.

How many strings are in A4?

Homework Question

o Say A = {la], [¢],[c], [d]}.

How many strings are in A4?

What if A = {[a], 8], [c], [|};

how many strings are then in 4+?

The Star Operation
o The Kleene Star of a language:

def

This expands to

A°UA VA UAUA*U. ..

or

{[fudud@d U A@A@A U AQRA@RA@AU...

The Meaning of a
Regular Expression

def
) = {
) 2 ([
L(c) = {ld}
Lri4+r) £ L(r)UL(r)
) £ {5@s, |5 €L(r)As, €L(r,)}
> déf <L<r))* d:"f UoSnL(r)n
L is a function from regular expressions
to sets of strings (languages):

L : Rexp = Set[String]

Questions?

homework (written exam 80%)

coursework (20%; first one today)
submission Fridays @ 18:00 — accepted until
Mondays

Semantic Derivative

e The Semantic Derivative of a language
w.r.t. to a character ¢

DercA = {s|cuse A}

For A = {foo, bar, frak} then

DerfA = {oo,rak}
DerbA = {ar}
DeraA = {}

Semantic Derivative

e The Semantic Derivative of a language
w.r.t. to a character ¢

DercA = {s|cuse A}

For A = {foo, bar, frak} then

DerfA = {oo,rak}
DerbA = {ar}
DeraA = {}

We can extend this definition to strings

DerssA = {s' | s@s € A}

The Specification
for Matching

A regular expression » matches a
string s provided

s € L(r)

...and the point of the this lecture is to decide this
problem as fast as possible (unlike Python, Ruby;
Java etc)

Regular Expressions

Their inductive definition:

S =@

ry 71,
rtr,

nothing

empty string / > / ||
single character
sequence
alternative / choice
star (zero or more)

Th case

case
case
case
case
case

abstract class Rexp

object ZERO extends Rexp

object ONE ext
class CHAR(c:
class ALT(r1:
class SEQ(ri:
class STAR(r:

ends Rexp

Char) extends Rexp

Rexp, r2: Rexp) extends Rexp
Rexp, r2: Rexp) extends Rexp
Rexp) extends Rexp

r

= 0
| x
| ¢
|
|
|

nothing

empty string / > / ||
single character
sequence
alternative / choice
star (zero or more)

When Are Two Regular
Expressions Equivalent?

Concrete Equivalences

(a+b)+c = a+ (b+¢)
ata = a
a+b = b+a
(@a-b)-c = a-(b-0)
c-(a+b) = (c-a)+(c-b)

Concrete Equivalences

(@a+b)+c
a-+ta
a+b

(@a-b)-c
c-(a+b)

a-a
a+(b-c)

Tk Tk

a+ (b+c)
Z—l—a
a-(b-c)
(c-a)+ (c-b)

(@+8)-(a+c)

Corner Cases

*
IO - O

SHOHC Tt
ﬁ lﬂ I*I *0

RN

Simplification Rules

r+ o
o-+r
r-x
17
r-o
o-r
r+r

U001 i 1l
N e %Y NN

Another Homework
Question

e How many basic regular expressions are there to
match the string abcd?

Another Homework
Question

e How many basic regular expressions are there to
match the string abcd?

o How many if they cannot include 1 and o?

Another Homework
Question

e How many basic regular expressions are there to
match the string abcd?

o How many if they cannot include 1 and o?

e How many if they are also not allowed to contain
stars?

Another Homework
Question

How many basic regular expressions are there to
match the string abcd?

How many if they cannot include 1 and o?

How many if they are also not allowed to contain
stars?

How many if they are also not allowed to contain
+?

Brzozowski’s Algorithm
(1)

...whether a regular expression can match the
empty string:

nullable(o = false

llabl, = fal

nullable(x) < true

nullable(c) < false

nullable(r, +r,) <= nullable(r,) N nullable(r,)

nullable(r, - r,) < nullable(r,) N nullable(r,)
(

nullable(r*) < true

The Derivative of a Rexp

If » matches the string c::s, what is a
regular expression that matches just s?

der cr gives the answer, Brzozowski 1964

The Derivative of a Rexp

derc (0)

derc (r*)

def
© ifc = dthen 1 else 0
def dercr,+ dercr,
L if nullable(r,)
then (dercr,) -r, +dercr,

else (dercr,) - r,
def

= (dercr) - (r*)

The Derivative of a Rexp

derc (0)

def
def
=0
def .
= if c = d then 1 else 0
def

= dercr, +dercr,

L if nullable(r,)
then (dercry) -r, +dercr,

else (dercr,) - r,
def

= (dercr) - (r*)

def
=r
def

= derss (dercr)

Examples

Givenr < ((2-b) + b)* what is

derar =7
derbr =7
dercr =7

The Brzozowski Algorithm

matchesrs = nullable(ders s r)

Brzozowski: An Example

Does r, match abc?

Step 1:
Step 2:
Step 3:
Step 4:

Output:

build derivative of z and », (r, = derar,)
build derivative of b and r, (r; = derbr,)
build derivative of cand r; (r, = dercr;)
the string is exhausted: (nullable(r,))

test whether 7, can recognise
the empty string

result of the test
=> true or false

The Idea of the Algorithm

If we want to recognise the string #bc with regular
expression 7; then

@ Dera(L(ry))

The Idea of the Algorithm

If we want to recognise the string #bc with regular
expression 7; then

@ Dera(L(ry))
@ Derb (Dera (L(ry)))

The Idea of the Algorithm

If we want to recognise the string @bc with regular
expression 7; then

@ Dera(L(ry))
@ Derb (Dera (L(ry)))
@ Derc(Derb (Dera(L(ry))))

Q finally we test whether the empty string is in this
set; same for Dersabc (L(r,)).

The matching algorithm works similarly; just over
regular expressions instead of sets.

time in secs

Oops... 2\n} . g\n}

—o-Python
—> Ruby
——Scala V1

IO 3on

A Problem

We represented the “n-times” 2"} as a sequence
regular expression:

I: a
a-a
3 a-a-a

13: 4a-d-a-d-d-a-d-a-d-a-d-a-a
20:

This problem is aggravated with &’ being
represented as « + I.

Solving the Problem

What happens if we extend our regular
expressions with explicit constructors

r

?
r

o
|

What is their meaning?
What are the cases for nullable and der?

time in secs

Brzozowski: 2’ % . g1}

200 400 600 8001,000

——Python
—o— Ruby
——Scala V1
~+Scala V2

n

Examples

Recall the example of r = ((« - 4) 4 4)* with

derar = ((x-6) + o) -
derbr = ((0-b6)+1)-
dercr=((0-b)+o0)-

N S N

What are these regular expressions equivalent to?

Simplification Rules

r+o = r
o+r = r
r-1 = r
I-r = r
r-0o = 0
o'r = O
r+r = r

def ders(s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, simp(der(c, r)))

}

def simp(r: Rexp) : Rexp = r match {
case ALT(rl, r2) => {
(simp(rl), simp(r2)) match {
case (ZERO, r2s) => r2s
case (rls, ZERO) => rils
case (rls, r2s) =»>
if (rls == r2s) rls else ALT(rls, r2s)
¥
}
case SEQ(r1, r2) => {
(simp(rl), simp(r2)) match {
case (ZERO, _) => ZERO
case (_, ZERO) => ZERO
case (ONE, r2s) => r2s
case (rls, ONE) => rils
case (rls, r2s) => SEQ(rls, r2s)

}
}

case r =>r

Brzozowski: 2’ % . g1}

30 | ~Scala V2
——Scala V3

25 |
20 |
15 |
10 |

time in secs

Another Example
in Java 8 and Python

» 30 {|—oJava§
Q
Q —o- Python
a 20 7
(9]
g 10 |
gl
O ©

§ 10 1§ 20 25 30 7

Regex: (¢*)* - b
Strings of the form ¢. ..«

n

Same Example in Java 9+

time in secs

t|=—Java 9+

IO |

Regex: (a*)* -4

Strings of the form

10,000 20,000 30,000 40,000

n

a...a
N —

n

and with Brzozowski

30 | |-o-Scala V3

time in secs

Regex: (*)* - b
Strings of the form ¢. ..«

n

What is good about this
Alg.

extends to most regular expressions, for example
~r
is easy to implement in a functional language

the algorithm is already quite old; there is still
work to be done to use it as a tokenizer (that is
relatively new work)

We can prove its correctness...

Negation of Regular Expr’s

o ~r (everything that » cannot recognise)

def

o L(~r)=UNIV —L(r)
o nullable(~ r) = not (nullable(r))

o derc(~r) = ~ (dercr)

Negation of Regular Expr’s

o ~7r (everything that » cannot recognise)
g 8

o L(~7r) = UNIV — L(r)
o nullable(~ r) = not (nullable(r))
o derc(~r) = ~ (dercr)

Used often for recognising comments:

Coursework

Strand 1:

o Submission on Friday 12 October
accepted until Monday 15 @ 18:00

@ source code needs to be submitted as well

@ you can re-use my Scala code from KEATS
or use any programming language you like

@ https://nms.kcl.ac.uk/christian.urban/ProgInScalazed.pdf

Proofs about Rexps

Remember their inductive definition:

r

S =@

ry-r,
rotr,

*

r

If we want to prove something, say a property
P(r), for all regular expressions 7 then ...

Proofs about Rexp (2)

@ Pholds for 0, 1 and ¢

e P holds for 7, + 7, under the assumption that P
already holds for 7, and 7.

e P holds for 7, - , under the assumption that P
already holds for 7, and 7.

@ P holds for 7* under the assumption that P
already holds for 7.

Proofs about Rexp (3)

Assume P(r) is the property:

nullable(r) if and only if [| € L(r)

Proofs about Rexp (4)

[=N
=

€

rev(0) = o
def
rev(1) = 1
def
rev(c) = ¢
rev(r, +r,) = rev(r,) + rev(r,)
rev(r,-r,) £ rev(r,) - rev(r,)
def
rev(r*) = rev(r)*

We can prove

L(rev(r)) = {s " |s € L(r)}

by induction on r.

Correctness Proof
for our Matcher

o We started from
s€L(r)
&[] € Derss (L(r))

Correctness Proof
for our Matcher

o We started from
s€L(r)
< [| € Derss (L(r))
o if we can show Derss (L(r)) = L(derssr) we have
< || € L(derssr)

< nullable(derssr)

def
= matchessr

Proofs about Rexp (5)

Let Derc A be the set defined as
DercA = {s|cuse A}
We can prove
L(dercr) = Derc (L(r))

by induction on 7.

Proofs about Strings

If we want to prove something, say a property
P(s), for all strings s then ...
e P holds for the empty string, and

e P holds for the string ¢::5s under the assumption

that P already holds for s

Proofs about Strings (2)

We can then prove
Derss (L(r)) = L(derssr)
We can finally prove

matchessr if and only if s € L(r)

time in secs

Epilogue

Graph: 2'1"} . 4}

time in secs

Graph: (a*)* -4

—0— Scala V3
—0— Scala V4

‘106

Epilogue

Graph: 2'1"} . 4}

Graph: (a*)* -4

case
case
case

(Nil, r) =>r
(s, ZERO) => ZERO

30 30
w 25 w 25
Q Q
% 20 % 20
= =
p
def ders2(s: List[Char], r: Rexp) Rexp = (s, r) match {

case

case
case

(s, ONE) => if (s == Nil) ONE else ZERO
(s, CHAR(c)) => if (s == List(c)) ONE else

if (s Nil) CHAR(c) else ZERO
ALT(rl, r2)) => ALT(ders2(s, r2), ders2(s,
s, r) => ders2(s, simp(der(c, r)))

r2))

(s,
(c::

