
Antimirov’s Proof about Pders

These are some rough notes about the result by Antimirov establishing a
bound on the number of regular expressions in a partial derivative. From
this bound on the number of partial derivatives one can easily construct
an NFA for a regular expression, but one can also derive a bound on the
size of the partial derivatives. This is what we do first. We start with the
following definitions:

• pder c r — partial derivative according to a character; this can be de-
fined inductively as follows:

pder c (0) def
= ∅

pder c (1) def
= ∅

pder c (d) def
= if c = d then {1} else ∅

pder c (r1 + r2)
def
= pder c r1 ∪ pder c r2

pder c (r1 · r2)
def
= if nullable(r1)

then Π (pder c r1) r2 ∪ pder c r2
else Π (pder c r1) r2

pder c (r∗) def
= Π (pder c r) (r∗)

• pder+ c rs — partial derivatives for a set regular exprssions rs

• pders s r — partial derivative of a regular expression according to a
string

• Pders A r def
=

⋃
s∈A .pders s r — partial derivatives according to a lan-

guage (a set of strings)

• |rs| is the size of a set of regular expressions rs, or the number of
elements in the set (also known as the cardinality of this set)

• ∏ rs r def
= {r1 · r | r1 ∈ rs} — this is some convenience when writing

a set of sequence regular expressions. It essentially “appends” the
regular expression r to all regular expressions in the set rs. As a result

1

one can write the sequence case for partial derivatives (see above)
more conveniently as

pder c (r1 · r2)
def
=

{
∏ (pder c r1) r2 ∪ pder c r2 provided r1 is nullable

∏ (pder c r1) r2 otherwise

• Psuf s is the set of all non-empty suffixes of s defined as

PSuf s def
= {v. v 6= [] ∧ ∃u.u @ v = s}

So for the string abc the non-empty suffixes are c, bc and abc. Also we
have that Psuf (s @ [c]) = ((Psuf s)@@ [c])∪ {[c]}. Here @@ means to
concatenate [c] to the end of all strings in Psuf s; in this equation we
also need to add {[c]} in order to make the equation to hold.

To stateAntimirov’s result we need the following definition of an alphabetic
width of a regular expression defined as follows:

awidth(0) def
= 0

awidth(1) def
= 0

awidth(c) def
= 1

awidth(r1 + r2)
def
= awidth(r1) + awidth(r2)

awidth(r1 · r2)
def
= awidth(r1) + awidth(r2)

awidth(r∗) def
= awidth(r)

This function counts howmany characters are in a regular expression. An-
timirov’s result states

Theorem 1 ∀ A r . |Pders A r| ≤ awidth(r) + 1

Note this theorem holds for any set of strings A, for example for the set of
all strings, which I will write as UNIV, and also for the set {s} containing
only a single string s. Therefore a simple corollary is

Corollary 2 ∀ s r . |pders s r| ≤ awidth(r) + 1

2

This property says that for every string s, the number of regular expres-
sions in the derivative can never be bigger than awidth(r) + 1. Interest-
ingly we do not show Thm 1 for all sets of strings A directly, but rather
only for one particular set of strings which I call UNIV1. It includes all
strings except the empty string (remember UNIV contains all strings).

Let’s try to give below a comprehensible account of Antimirov’s proof of
Thm. 1—I distictly remember that Antimirov’s paper is great, but pretty
incomprehensible for the first 20+ times one reads that paper. The proof
starts with the followingmuchweaker property about the size being finite:

Lemma 3 ∀ A r . (Pders A r) is a finite set.

This lemma is needed because some reasoning steps in Thm 1 only work
for finite sets, not infinite sets. But let us skip over the proof of this prop-
erty at first and let us assume we know already that the partial derivatives
are always finite sets (this for example does not hold for unsimplified Br-
zozowski derivatives which can be infinite for some sets of strings).

There are some central lemmas about partial derivatives for · and _∗.
One is the following

Lemma 4

Pders UNIV1 (r1 · r2) ⊆ (∏(Pders UNIV1 r1) r2) ∪ Pders UNIV1 r2

Proof: The proof is done via an induction for the following property

pders s (r1 · r2) ⊆ (∏(pders s r1) r2) ∪ Pders (PSuf s) r2

Note that this property uses pders and Pders together. The proof is done by “re-
verse” induction on s, meaning the cases to analyse are the empty string [] and the
case where a character is put at the end of the string s, namely s @ [c]. The case []
is trivial. In the other case we know by IH that

pders s (r1 · r2) ⊆ (∏(pders s r1) r2) ∪ Pders (PSuf s) r2

holds for s. Then we have to show it holds for s @ [c]

3

pders (s @ [c]) (r1 · r2)
= pder+ c (pders s (r1 · r2))
⊆ pder+ c (∏(pders s r1) r2 ∪ Pders (PSuf s) r2)

by IH
= (pder+ c (∏(pders s r1) r2)) ∪ (pder+ c (Pders (PSuf s) r2))
= (pder+ c (∏(pders s r1) r2)) ∪ (Pders (PSuf (s @ [c])) r2)
⊆ (pder+ c (∏(pders s r1) r2)) ∪ (pder c r2) ∪ (Pders (PSuf s @@ [c]) r2)
⊆ ∏(pder+ c (pders s r1)) r2 ∪ (pder c r2) ∪ (Pders (PSuf s @@ [c]) r2)
= (∏(pders (s @ [c]) r1) r2) ∪ (pder c r2) ∪ (Pders (PSuf s @@ [c]) r2)
⊆ (∏(pders (s @ [c]) r1) r2) ∪ (Pders (PSuf (s @ [c])) r2)

The lemma now follows because for an s ∈ UNIV1 it holds that

∏ (pders s r1) r2 ⊆ ∏(Pders UNIV1 r1) r2

and

Pders (PSuf s) r2 ⊆ Pders UNIV1 r2

The left-hand sides of the inclusions above are euqal to pders s (r1 · r2) for a string
s ∈ UNIV1. �

There is a similar lemma for the ∗-regular expression, namely:

Lemma 5 Pders UNIV1 (r∗) ⊆ ∏ (Pders UNIV1 r) (r∗)

We omit the proof for the moment (similar to Lem 4). We also need the
following property about the cardinality of ∏:

Lemma 6 |∏ (Pders A r1) r2| ≤ |Pders A r1|

We only need the ≤ version, which essentially says there are as many se-
quences r · r2 as are elements in r. Now for the proof of Thm 1: The main
induction in Antimirov’s proof establishes that:1

Lemma 7 ∀r. |Pders UNIV1 r| ≤ awidth(r)
1Remember that it is always the hardest part in an induction proof to find the right

property that is strong enough and of the right shape for the induction to go through.

4

Proof: This is proved by induction on r. The interesting cases are r1 + r2, r1 · r2
and r∗. Let us start with the relatively simple case:

Case r1 + r2: By induction hypothesis we know

|Pders UNIV1 r1| ≤ awidth(r1)
|Pders UNIV1 r2| ≤ awidth(r2)

In this case we can reason as follows

|Pders UNIV1 (r1 + r2)|
= |(Pders UNIV1 r1) ∪ (Pders UNIV1 r2)|
≤ |(Pders UNIV1 r1)| + |(Pders UNIV1 r2)| (*)
≤ awidth(r1) + awidth(r2)
def
= awidth(r1 + r2)

Note that (*) is a step that only works if one knows that |(Pders UNIV1 r1)| and
so on are finite. The next case is a bit more interesting:

Case r1 · r2: We have the same induction hypothesis as in the case before.

|Pders UNIV1 (r1 · r2)|
≤ |∏ (Pders UNIV1 r1) r2 ∪ (Pders UNIV1 r2)| by Lem 4
≤ |∏ (Pders UNIV1 r1) r2| + |(Pders UNIV1 r2)|
≤ |Pders UNIV1 r1| + |Pders UNIV1 r2| by Lem 6
≤ awidth(r1) + awidth(r2)
def
= awidth(r1 · r2)

Case r∗: Again we have the same induction hypothesis as in the cases before.

|Pders UNIV1 (r∗)|
≤ |∏ (Pders UNIV1 r) (r∗)| by Lem 5
≤ |Pders UNIV1 r| by Lem 6
≤ awidth(r)

�

From this lemmawe can derive the next corrollarywhich extends the prop-
erty to UNIV (= UNIV1 ∪ {[]}):

Corollary 8 ∀r. |Pders UNIV r| ≤ awidth(r) + 1

5

Proof: This can be proved as follows

|Pders UNIV r|
= |Pders (UNIV1 ∪ {[]}) r|
= |(Pders UNIV1 r) ∪ {r}|
≤ |Pders UNIV1 r|+ 1 by Lem 7
≤ awidth(r) + 1

�
From the last corollary, it is easy to infer Antimirov’s Thm 1, because

Pders A r ⊆ Pders UNIV r

for all sets A.

While I was earlier a bit dismissive above about the intelligibility of An-
timirov’s paper, you have to admit this proof is a work of beauty. It only
gives a bound (awidth) for the number of regular expressions in the de-
rivatives—this is important for constructing NFAs. Maybe it has not been
important before, but I have never seen a result about the size of the par-
tial derivatives.2 However, a very crude bound, namely (size(r)2 + 1) ×
(awidth(r) + 1), can be easily derived by using Antimirov’s result. The
definition we need for this is a function that collects subexpressions from
which partial derivatives are built:

subs(0) def
= {0}

subs(1) def
= {1}

subs(c) def
= {c, 1}

subs(r1 + r2)
def
= {r1 + r2} ∪ subs(r1) ∪ subs(r2)

subs(r1 · r2)
def
= {r1 · r2} ∪ (∏ subs(r1) r2) ∪ subs(r1) ∪ subs(r2)

subs(r∗) def
= {r∗} ∪ (∏ subs(r) r∗) ∪ subs(r)

We can show that

Lemma 9 pders s r ⊆ subs(r)

This is a relatively simple induction on r. The point is that for every ele-
ment in subs, the maximum size is given by

2Update: I have now seen a paper which proves this result as well.

6

Lemma 10 If r′ ∈ subs(r) then size(r′) ≤ 1 + size(r)2.

Again the proof is a relatively simple induction on r. StringingAntimirov’s
result and the lemma above together gives

Theorem 11 ∑r′∈pders s r . size(r′) ≤ (size(r)2 + 1)× (awidth(r) + 1)

Since awidth is always smaller than the size of a regular expression, one
can also state the bound as follows:

∑
r′∈pders s r

. size(r′) ≤ (size(r) + 1)3

This, by the way, also holds for Pders, namely

∑
r′∈Pders A r

. size(r′) ≤ (size(r) + 1)3

for all r and A. If one is interested in the height of the partial derivatives,
one can derive:

∀ r′ ∈ pders s r. height(r′) ≤ height(r) + 1

meaning the height of the partial derivatives is never bigger than the height
of the original regular expression (+1).

NFA Construction via Antimirov’s Partial Deriva-

tives

Let’s finish these notes with the construction of an NFA for a regular ex-
pression using partial derivatives. As usual an automaton is a quintuple
(Q, A, δ, q0, F)where Q is the set of states of the automaton, A is the alpha-
bet, q0 is the starting state and F are the accepting states. For DFAs the δ is
a (partial) function from state× character to state. For NFAs it is a relation
between state × character × state. The non-determinism can be seen by
the following: consider three (distinct) states q1, q2 and q3, then the rela-
tion can include (q1, a, q2) and (q1, a, q3), which means there is a transition
between q1 and both q2 and q3 for the character a.

7

The Antimirov’s NFA for a regular expression r is then given by the
quintuple

(PD(r), A, δPD, r, F)

where PD(r) are all the partial derivatives according to all strings, that is

PD(r) def
= Pders UNIV r

Because of the previous proof, we know that this set is finite. We also see
that the states in Antimirov’s NFA are “labelled” by single regular expres-
sions. The starting state is labelled with the original regular expression r.
The set of accepting states F is all states r′ ∈ F where r′ is nullable. The
relation δPD is given by

(r1, c, r2)

for every r1 ∈ PD(r) and r2 ∈ pder c r. This is in general a “non-deterministic”
relation because the set of partial derivatives often contains more than one
element. A nice example of an NFA constructed via Antimirov’s partial
derivatives is given in [1] on Page 378.

The difficulty of course in this construction is to find the set of partial
derivatives according to all strings. However, it seem a procedure that enu-
merates strings according to size suffices until no new derivative is found.
There are various improvements that apply clever tricks on how to more
efficiently discover this set.

References

[1] L. Ilie and S. Yu, Reducing NFAs by Invariant Equivalences. In Theoret-
ical Computer Science, Volume 306(1–3), Pages 373–-390, 2003.
https://core.ac.uk/download/pdf/82545723.pdf

8

https://core.ac.uk/download/pdf/82545723.pdf

