| author | Christian Urban <urbanc@in.tum.de> | 
| Fri, 28 Apr 2017 11:01:25 +0100 | |
| changeset 487 | ffbc65112d48 | 
| parent 481 | e2e13cc2c9d7 | 
| child 488 | 057b4603b940 | 
| permissions | -rw-r--r-- | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1 | \documentclass{article}
 | 
| 251 
5b5a68df6d16
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
217diff
changeset | 2 | \usepackage{../style}
 | 
| 217 
cd6066f1056a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
140diff
changeset | 3 | \usepackage{../langs}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 4 | \usepackage{../graphics}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 5 | \usepackage{../data}
 | 
| 480 | 6 | |
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 7 | |
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 8 | \begin{document}
 | 
| 471 | 9 | \fnote{\copyright{} Christian Urban, King's College London, 2014, 2015, 2016, 2017}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 10 | |
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 11 | |
| 272 
1446bc47a294
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
268diff
changeset | 12 | \section*{Handout 2 (Regular Expression Matching)}
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 13 | |
| 412 | 14 | This lecture is about implementing a more efficient regular expression | 
| 478 | 15 | matcher (the plots on the right below)---more efficient than the | 
| 16 | matchers from regular expression libraries in Ruby, Python and Java | |
| 17 | (the plots on the left). The first pair of plots show the running time | |
| 18 | for the regular expression $(a^*)^*\cdot b$ and strings composed of | |
| 19 | $n$ \pcode{a}s (meaning this regular expression actually does not
 | |
| 20 | match the strings). The second pair of plots show the running time for | |
| 21 | the regular expressions $a^?{}^{\{n\}}\cdot a^{\{n\}}$ and strings
 | |
| 22 | also composed of $n$ \pcode{a}s (this time the regular expressions
 | |
| 412 | 23 | match the strings). To see the substantial differences in the left | 
| 478 | 24 | and right plots below, note the different scales of the $x$-axes. | 
| 25 | ||
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 26 | |
| 478 | 27 | \begin{center}
 | 
| 28 | Graphs: $(a^*)^* \cdot b$ and strings $\underbrace{a\ldots a}_{n}$
 | |
| 29 | \begin{tabular}{@{}cc@{}}
 | |
| 30 | \begin{tikzpicture}
 | |
| 31 | \begin{axis}[
 | |
| 32 |     xlabel={$n$},
 | |
| 33 |     x label style={at={(1.05,0.0)}},
 | |
| 34 |     ylabel={time in secs},
 | |
| 35 | enlargelimits=false, | |
| 36 |     xtick={0,5,...,30},
 | |
| 37 | xmax=33, | |
| 38 | ymax=35, | |
| 39 |     ytick={0,5,...,30},
 | |
| 40 | scaled ticks=false, | |
| 41 | axis lines=left, | |
| 42 | width=5cm, | |
| 43 | height=5cm, | |
| 44 |     legend entries={Java, Python},  
 | |
| 45 | legend pos=north west, | |
| 46 | legend cell align=left] | |
| 47 | \addplot[blue,mark=*, mark options={fill=white}] table {re-python2.data};
 | |
| 48 | \addplot[cyan,mark=*, mark options={fill=white}] table {re-java.data};
 | |
| 49 | \end{axis}
 | |
| 50 | \end{tikzpicture}
 | |
| 51 | & | |
| 52 | \begin{tikzpicture}
 | |
| 53 |   \begin{axis}[
 | |
| 54 |     xlabel={$n$},
 | |
| 55 |     x label style={at={(1.05,0.0)}},
 | |
| 56 |     ylabel={time in secs},
 | |
| 57 | enlargelimits=false, | |
| 58 | ymax=35, | |
| 59 |     ytick={0,5,...,30},
 | |
| 60 | axis lines=left, | |
| 61 | scaled ticks=false, | |
| 62 | width=6.5cm, | |
| 63 | height=5cm, | |
| 64 |     legend entries={Scala V3},  
 | |
| 65 | legend pos=north east, | |
| 66 | legend cell align=left] | |
| 67 | %\addplot[green,mark=square*,mark options={fill=white}] table {re2a.data};    
 | |
| 68 | \addplot[black,mark=square*,mark options={fill=white}] table {re3a.data};
 | |
| 69 | \end{axis}
 | |
| 70 | \end{tikzpicture}
 | |
| 71 | \end{tabular}
 | |
| 72 | \end{center}
 | |
| 263 
92e6985018ae
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
262diff
changeset | 73 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 74 | \begin{center}
 | 
| 415 | 75 | Graphs: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$\\
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 76 | \begin{tabular}{@{}cc@{}}
 | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 77 | \begin{tikzpicture}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 78 | \begin{axis}[
 | 
| 414 | 79 |     xlabel={$n$},
 | 
| 80 |     x label style={at={(1.05,0.0)}},
 | |
| 412 | 81 |     ylabel={\small time in secs},
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 82 | enlargelimits=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 83 |     xtick={0,5,...,30},
 | 
| 291 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 84 | xmax=33, | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 85 | ymax=35, | 
| 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 86 |     ytick={0,5,...,30},
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 87 | scaled ticks=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 88 | axis lines=left, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 89 | width=5cm, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 90 | height=5cm, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 91 |     legend entries={Python,Ruby},  
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 92 | legend pos=north west, | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 93 | legend cell align=left] | 
| 434 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 94 | \addplot[blue,mark=*, mark options={fill=white}] table {re-python.data};
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 95 | \addplot[brown,mark=triangle*, mark options={fill=white}] table {re-ruby.data};  
 | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 96 | \end{axis}
 | 
| 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 97 | \end{tikzpicture}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 98 | & | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 99 | \begin{tikzpicture}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 100 |   \begin{axis}[
 | 
| 414 | 101 |     xlabel={$n$},
 | 
| 102 |     x label style={at={(1.1,0.05)}},
 | |
| 412 | 103 |     ylabel={\small time in secs},
 | 
| 104 | enlargelimits=false, | |
| 477 | 105 |     xtick={0,2500,...,11000},
 | 
| 106 | xmax=12000, | |
| 412 | 107 | ymax=35, | 
| 108 |     ytick={0,5,...,30},
 | |
| 109 | scaled ticks=false, | |
| 110 | axis lines=left, | |
| 111 | width=6.5cm, | |
| 478 | 112 | height=5cm, | 
| 113 |     legend entries={Scala V3},  
 | |
| 114 | legend pos=north east, | |
| 115 | legend cell align=left] | |
| 116 | %\addplot[green,mark=square*,mark options={fill=white}] table {re2.data};
 | |
| 412 | 117 | \addplot[black,mark=square*,mark options={fill=white}] table {re3.data};
 | 
| 118 | \end{axis}
 | |
| 119 | \end{tikzpicture}
 | |
| 120 | \end{tabular}
 | |
| 121 | \end{center}
 | |
| 478 | 122 | \medskip | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 123 | |
| 412 | 124 | \noindent | 
| 478 | 125 | We will use these regular expressions and strings as running | 
| 126 | examples. There will be several versions (V1, V2, V3,\ldots) of the | |
| 127 | algorithm.\footnote{The corresponding files are \texttt{re1.scala},
 | |
| 128 |   \texttt{re2.scala} and so on. As usual, you can find the code on
 | |
| 129 | KEATS.}\bigskip | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 130 | |
| 478 | 131 | \noindent | 
| 412 | 132 | Having specified in the previous lecture what | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 133 | problem our regular expression matcher is supposed to solve, | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 134 | namely for any given regular expression $r$ and string $s$ | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 135 | answer \textit{true} if and only if
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 136 | |
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 137 | \[ | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 138 | s \in L(r) | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 139 | \] | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 140 | |
| 412 | 141 | \noindent we can look at an algorithm to solve this problem. Clearly | 
| 142 | we cannot use the function $L$ directly for this, because in general | |
| 143 | the set of strings $L$ returns is infinite (recall what $L(a^*)$ is). | |
| 144 | In such cases there is no way we can implement an exhaustive test for | |
| 145 | whether a string is member of this set or not. In contrast our | |
| 146 | matching algorithm will operate on the regular expression $r$ and | |
| 414 | 147 | string $s$, only, which are both finite objects. Before we explain | 
| 412 | 148 | the matching algorithm, however, let us have a closer look at what it | 
| 149 | means when two regular expressions are equivalent. | |
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 150 | |
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 151 | \subsection*{Regular Expression Equivalences}
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 152 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 153 | We already defined in Handout 1 what it means for two regular | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 154 | expressions to be equivalent, namely if their meaning is the | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 155 | same language: | 
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 156 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 157 | \[ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 158 | r_1 \equiv r_2 \;\dn\; L(r_1) = L(r_2) | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 159 | \] | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 160 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 161 | \noindent | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 162 | It is relatively easy to verify that some concrete equivalences | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 163 | hold, for example | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 164 | |
| 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 165 | \begin{center}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 166 | \begin{tabular}{rcl}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 167 | $(a + b) + c$ & $\equiv$ & $a + (b + c)$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 168 | $a + a$ & $\equiv$ & $a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 169 | $a + b$ & $\equiv$ & $b + a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 170 | $(a \cdot b) \cdot c$ & $\equiv$ & $a \cdot (b \cdot c)$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 171 | $c \cdot (a + b)$ & $\equiv$ & $(c \cdot a) + (c \cdot b)$\\ | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 172 | \end{tabular}
 | 
| 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 173 | \end{center}
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 174 | |
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 175 | \noindent | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 176 | but also easy to verify that the following regular expressions | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 177 | are \emph{not} equivalent
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 178 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 179 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 180 | \begin{tabular}{rcl}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 181 | $a \cdot a$ & $\not\equiv$ & $a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 182 | $a + (b \cdot c)$ & $\not\equiv$ & $(a + b) \cdot (a + c)$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 183 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 184 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 185 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 186 | \noindent I leave it to you to verify these equivalences and | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 187 | non-equivalences. It is also interesting to look at some | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 188 | corner cases involving $\ONE$ and $\ZERO$: | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 189 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 190 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 191 | \begin{tabular}{rcl}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 192 | $a \cdot \ZERO$ & $\not\equiv$ & $a$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 193 | $a + \ONE$ & $\not\equiv$ & $a$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 194 | $\ONE$ & $\equiv$ & $\ZERO^*$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 195 | $\ONE^*$ & $\equiv$ & $\ONE$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 196 | $\ZERO^*$ & $\not\equiv$ & $\ZERO$\\ | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 197 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 198 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 199 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 200 | \noindent Again I leave it to you to make sure you agree | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 201 | with these equivalences and non-equivalences. | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 202 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 203 | |
| 318 
7975e4f0d4de
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
296diff
changeset | 204 | For our matching algorithm however the following seven | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 205 | equivalences will play an important role: | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 206 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 207 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 208 | \begin{tabular}{rcl}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 209 | $r + \ZERO$ & $\equiv$ & $r$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 210 | $\ZERO + r$ & $\equiv$ & $r$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 211 | $r \cdot \ONE$ & $\equiv$ & $r$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 212 | $\ONE \cdot r$ & $\equiv$ & $r$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 213 | $r \cdot \ZERO$ & $\equiv$ & $\ZERO$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 214 | $\ZERO \cdot r$ & $\equiv$ & $\ZERO$\\ | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 215 | $r + r$ & $\equiv$ & $r$ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 216 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 217 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 218 | |
| 412 | 219 | \noindent which always hold no matter what the regular expression $r$ | 
| 220 | looks like. The first two are easy to verify since $L(\ZERO)$ is the | |
| 221 | empty set. The next two are also easy to verify since $L(\ONE) = | |
| 222 | \{[]\}$ and appending the empty string to every string of another set,
 | |
| 223 | leaves the set unchanged. Be careful to fully comprehend the fifth and | |
| 224 | sixth equivalence: if you concatenate two sets of strings and one is | |
| 225 | the empty set, then the concatenation will also be the empty set. To | |
| 226 | see this, check the definition of $\_ @ \_$ for sets. The last | |
| 227 | equivalence is again trivial. | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 228 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 229 | What will be important later on is that we can orient these | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 230 | equivalences and read them from left to right. In this way we | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 231 | can view them as \emph{simplification rules}. Consider for 
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 232 | example the regular expression | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 233 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 234 | \begin{equation}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 235 | (r_1 + \ZERO) \cdot \ONE + ((\ONE + r_2) + r_3) \cdot (r_4 \cdot \ZERO) | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 236 | \label{big}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 237 | \end{equation}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 238 | |
| 412 | 239 | \noindent If we can find an equivalent regular expression that is | 
| 240 | simpler (smaller for example), then this might potentially make our | |
| 241 | matching algorithm run faster. We can look for such a simpler regular | |
| 242 | expression $r'$ because whether a string $s$ is in $L(r)$ or in | |
| 243 | $L(r')$ with $r\equiv r'$ will always give the same answer. In the | |
| 244 | example above you will see that the regular expression is equivalent | |
| 245 | to just $r_1$. You can verify this by iteratively applying the | |
| 246 | simplification rules from above: | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 247 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 248 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 249 | \begin{tabular}{ll}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 250 | & $(r_1 + \ZERO) \cdot \ONE + ((\ONE + r_2) + r_3) \cdot | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 251 | (\underline{r_4 \cdot \ZERO})$\smallskip\\
 | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 252 | $\equiv$ & $(r_1 + \ZERO) \cdot \ONE + \underline{((\ONE + r_2) + r_3) \cdot 
 | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 253 | \ZERO}$\smallskip\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 254 | $\equiv$ & $\underline{(r_1 + \ZERO) \cdot \ONE} + \ZERO$\smallskip\\
 | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 255 | $\equiv$ & $(\underline{r_1 + \ZERO}) + \ZERO$\smallskip\\
 | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 256 | $\equiv$ & $\underline{r_1 + \ZERO}$\smallskip\\
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 257 | $\equiv$ & $r_1$\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 258 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 259 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 260 | |
| 296 
796b9b81ac8d
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
291diff
changeset | 261 | \noindent In each step, I underlined where a simplification | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 262 | rule is applied. Our matching algorithm in the next section | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 263 | will often generate such ``useless'' $\ONE$s and | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 264 | $\ZERO$s, therefore simplifying them away will make the | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 265 | algorithm quite a bit faster. | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 266 | |
| 479 | 267 | Finally here are three equivalences between regulare expressions which are | 
| 268 | not so obvious: | |
| 269 | ||
| 270 | \begin{center}
 | |
| 271 | \begin{tabular}{rcl}
 | |
| 272 | $r^*$ & $\equiv$ & $1 + r\cdot r^*$\\ | |
| 273 | $(r_1 + r_2)^*$ & $\equiv$ & $r_1^* \cdot (r_2\cdot r_1^*)^*$\\ | |
| 274 | $(r_1 \cdot r_2)^*$ & $\equiv$ & $1 + r_1\cdot (r_2 \cdot r_1)^* \cdot r_2$\\ | |
| 275 | \end{tabular}
 | |
| 276 | \end{center}
 | |
| 277 | ||
| 278 | \noindent | |
| 279 | You can try to establish them. As an aside, there has been a lot of research | |
| 280 | in questions like: Can one always decide when two regular expressions are | |
| 281 | equivalent or not? What does an algorithm look like to decide this? | |
| 282 | ||
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 283 | \subsection*{The Matching Algorithm}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 284 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 285 | The algorithm we will define below consists of two parts. One | 
| 412 | 286 | is the function $\textit{nullable}$ which takes a regular expression as
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 287 | argument and decides whether it can match the empty string | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 288 | (this means it returns a boolean in Scala). This can be easily | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 289 | defined recursively as follows: | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 290 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 291 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 292 | \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
 | 
| 412 | 293 | $\textit{nullable}(\ZERO)$      & $\dn$ & $\textit{false}$\\
 | 
| 294 | $\textit{nullable}(\ONE)$         & $\dn$ & $\textit{true}$\\
 | |
| 295 | $\textit{nullable}(c)$                & $\dn$ & $\textit{false}$\\
 | |
| 296 | $\textit{nullable}(r_1 + r_2)$     & $\dn$ &  $\textit{nullable}(r_1) \vee \textit{nullable}(r_2)$\\ 
 | |
| 297 | $\textit{nullable}(r_1 \cdot r_2)$ & $\dn$ &  $\textit{nullable}(r_1) \wedge \textit{nullable}(r_2)$\\
 | |
| 298 | $\textit{nullable}(r^*)$              & $\dn$ & $\textit{true}$ \\
 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 299 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 300 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 301 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 302 | \noindent The idea behind this function is that the following | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 303 | property holds: | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 304 | |
| 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 305 | \[ | 
| 412 | 306 | \textit{nullable}(r) \;\;\text{if and only if}\;\; []\in L(r)
 | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 307 | \] | 
| 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 308 | |
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 309 | \noindent Note on the left-hand side of the if-and-only-if we | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 310 | have a function we can implement; on the right we have its | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 311 | specification (which we cannot implement in a programming | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 312 | language). | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 313 | |
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 314 | The other function of our matching algorithm calculates a | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 315 | \emph{derivative} of a regular expression. This is a function
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 316 | which will take a regular expression, say $r$, and a | 
| 412 | 317 | character, say $c$, as arguments and returns a new regular | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 318 | expression. Be careful that the intuition behind this function | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 319 | is not so easy to grasp on first reading. Essentially this | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 320 | function solves the following problem: if $r$ can match a | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 321 | string of the form $c\!::\!s$, what does the regular | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 322 | expression look like that can match just $s$? The definition | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 323 | of this function is as follows: | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 324 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 325 | \begin{center}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 326 | \begin{tabular}{l@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
 | 
| 414 | 327 |   $\textit{der}\, c\, (\ZERO)$      & $\dn$ & $\ZERO$\\
 | 
| 328 |   $\textit{der}\, c\, (\ONE)$         & $\dn$ & $\ZERO$ \\
 | |
| 329 |   $\textit{der}\, c\, (d)$                & $\dn$ & if $c = d$ then $\ONE$ else $\ZERO$\\
 | |
| 330 |   $\textit{der}\, c\, (r_1 + r_2)$        & $\dn$ & $\textit{der}\, c\, r_1 + \textit{der}\, c\, r_2$\\
 | |
| 331 |   $\textit{der}\, c\, (r_1 \cdot r_2)$  & $\dn$  & if $\textit{nullable} (r_1)$\\
 | |
| 332 |   & & then $(\textit{der}\,c\,r_1) \cdot r_2 + \textit{der}\, c\, r_2$\\ 
 | |
| 333 |   & & else $(\textit{der}\, c\, r_1) \cdot r_2$\\
 | |
| 334 |   $\textit{der}\, c\, (r^*)$          & $\dn$ & $(\textit{der}\,c\,r) \cdot (r^*)$
 | |
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 335 |   \end{tabular}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 336 | \end{center}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 337 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 338 | \noindent The first two clauses can be rationalised as | 
| 414 | 339 | follows: recall that $\textit{der}$ should calculate a regular
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 340 | expression so that given the ``input'' regular expression can | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 341 | match a string of the form $c\!::\!s$, we want a regular | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 342 | expression for $s$. Since neither $\ZERO$ nor $\ONE$ | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 343 | can match a string of the form $c\!::\!s$, we return | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 344 | $\ZERO$. In the third case we have to make a | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 345 | case-distinction: In case the regular expression is $c$, then | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 346 | clearly it can recognise a string of the form $c\!::\!s$, just | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 347 | that $s$ is the empty string. Therefore we return the | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 348 | $\ONE$-regular expression. In the other case we again | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 349 | return $\ZERO$ since no string of the $c\!::\!s$ can be | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 350 | matched. Next come the recursive cases, which are a bit more | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 351 | involved. Fortunately, the $+$-case is still relatively | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 352 | straightforward: all strings of the form $c\!::\!s$ are either | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 353 | matched by the regular expression $r_1$ or $r_2$. So we just | 
| 414 | 354 | have to recursively call $\textit{der}$ with these two regular
 | 
| 332 
4755ad4b457b
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
325diff
changeset | 355 | expressions and compose the results again with $+$. Makes | 
| 412 | 356 | sense? | 
| 357 | ||
| 358 | The $\cdot$-case is more complicated: if $r_1\cdot r_2$ | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 359 | matches a string of the form $c\!::\!s$, then the first part | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 360 | must be matched by $r_1$. Consequently, it makes sense to | 
| 414 | 361 | construct the regular expression for $s$ by calling $\textit{der}$ with
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 362 | $r_1$ and ``appending'' $r_2$. There is however one exception | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 363 | to this simple rule: if $r_1$ can match the empty string, then | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 364 | all of $c\!::\!s$ is matched by $r_2$. So in case $r_1$ is | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 365 | nullable (that is can match the empty string) we have to allow | 
| 414 | 366 | the choice $\textit{der}\,c\,r_2$ for calculating the regular
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 367 | expression that can match $s$. Therefore we have to add the | 
| 414 | 368 | regular expression $\textit{der}\,c\,r_2$ in the result. The $*$-case
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 369 | is again simple: if $r^*$ matches a string of the form | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 370 | $c\!::\!s$, then the first part must be ``matched'' by a | 
| 414 | 371 | single copy of $r$. Therefore we call recursively $\textit{der}\,c\,r$
 | 
| 372 | and ``append'' $r^*$ in order to match the rest of $s$. Still | |
| 373 | makes sense? | |
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 374 | |
| 414 | 375 | If all this did not make sense yet, here is another way to rationalise | 
| 376 | the definition of $\textit{der}$ by considering the following operation
 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 377 | on sets: | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 378 | |
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 379 | \begin{equation}\label{Der}
 | 
| 414 | 380 | \textit{Der}\,c\,A\;\dn\;\{s\,|\,c\!::\!s \in A\}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 381 | \end{equation}
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 382 | |
| 291 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 383 | \noindent This operation essentially transforms a set of | 
| 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 384 | strings $A$ by filtering out all strings that do not start | 
| 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 385 | with $c$ and then strips off the $c$ from all the remaining | 
| 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 386 | strings. For example suppose $A = \{f\!oo, bar, f\!rak\}$ then
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 387 | |
| 414 | 388 | \[ \textit{Der}\,f\,A = \{oo, rak\}\quad,\quad 
 | 
| 389 |    \textit{Der}\,b\,A = \{ar\} \quad \text{and} \quad 
 | |
| 390 |    \textit{Der}\,a\,A = \{\} 
 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 391 | \] | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 392 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 393 | \noindent | 
| 414 | 394 | Note that in the last case $\textit{Der}$ is empty, because no string in $A$
 | 
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 395 | starts with $a$. With this operation we can state the following | 
| 414 | 396 | property about $\textit{der}$:
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 397 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 398 | \[ | 
| 414 | 399 | L(\textit{der}\,c\,r) = \textit{Der}\,c\,(L(r))
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 400 | \] | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 401 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 402 | \noindent | 
| 414 | 403 | This property clarifies what regular expression $\textit{der}$ calculates,
 | 
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 404 | namely take the set of strings that $r$ can match (that is $L(r)$), | 
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 405 | filter out all strings not starting with $c$ and strip off the $c$ | 
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 406 | from the remaining strings---this is exactly the language that | 
| 414 | 407 | $\textit{der}\,c\,r$ can match.
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 408 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 409 | If we want to find out whether the string $abc$ is matched by | 
| 414 | 410 | the regular expression $r_1$ then we can iteratively apply $\textit{der}$
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 411 | as follows | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 412 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 413 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 414 | \begin{tabular}{rll}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 415 | Input: $r_1$, $abc$\medskip\\ | 
| 414 | 416 | Step 1: & build derivative of $a$ and $r_1$ & $(r_2 = \textit{der}\,a\,r_1)$\smallskip\\
 | 
| 417 | Step 2: & build derivative of $b$ and $r_2$ & $(r_3 = \textit{der}\,b\,r_2)$\smallskip\\
 | |
| 433 
c08290ee4f1f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
416diff
changeset | 418 | Step 3: & build derivative of $c$ and $r_3$ & $(r_4 = \textit{der}\,c\,r_3)$\smallskip\\
 | 
| 
c08290ee4f1f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
416diff
changeset | 419 | Step 4: & the string is exhausted: & $(\textit{nullable}(r_4))$\\
 | 
| 
c08290ee4f1f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
416diff
changeset | 420 | & test whether $r_4$ can recognise the\\ | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 421 | & empty string\smallskip\\ | 
| 412 | 422 | Output: & result of this test $\Rightarrow \textit{true} \,\text{or}\, \textit{false}$\\        
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 423 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 424 | \end{center}
 | 
| 140 
1be892087df2
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
133diff
changeset | 425 | |
| 414 | 426 | \noindent Again the operation $\textit{Der}$ might help to rationalise
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 427 | this algorithm. We want to know whether $abc \in L(r_1)$. We | 
| 414 | 428 | do not know yet---but let us assume it is. Then $\textit{Der}\,a\,L(r_1)$
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 429 | builds the set where all the strings not starting with $a$ are | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 430 | filtered out. Of the remaining strings, the $a$ is stripped | 
| 412 | 431 | off. So we should still have $bc$ in the set. | 
| 432 | Then we continue with filtering out all strings not | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 433 | starting with $b$ and stripping off the $b$ from the remaining | 
| 414 | 434 | strings, that means we build $\textit{Der}\,b\,(\textit{Der}\,a\,(L(r_1)))$.
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 435 | Finally we filter out all strings not starting with $c$ and | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 436 | strip off $c$ from the remaining string. This is | 
| 414 | 437 | $\textit{Der}\,c\,(\textit{Der}\,b\,(\textit{Der}\,a\,(L(r_1))))$. Now if $abc$ was in the 
 | 
| 438 | original set ($L(r_1)$), then $\textit{Der}\,c\,(\textit{Der}\,b\,(\textit{Der}\,a\,(L(r_1))))$ 
 | |
| 412 | 439 | must contain the empty string. If not, then $abc$ was not in the | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 440 | language we started with. | 
| 140 
1be892087df2
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
133diff
changeset | 441 | |
| 414 | 442 | Our matching algorithm using $\textit{der}$ and $\textit{nullable}$ works
 | 
| 443 | similarly, just using regular expression instead of sets. In order to | |
| 444 | define our algorithm we need to extend the notion of derivatives from single | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 445 | characters to strings. This can be done using the following | 
| 414 | 446 | function, taking a string and a regular expression as input and | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 447 | a regular expression as output. | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 448 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 449 | \begin{center}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 450 | \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 451 |   $\textit{ders}\, []\, r$     & $\dn$ & $r$ & \\
 | 
| 414 | 452 |   $\textit{ders}\, (c\!::\!s)\, r$ & $\dn$ & $\textit{ders}\,s\,(\textit{der}\,c\,r)$ & \\
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 453 |   \end{tabular}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 454 | \end{center}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 455 | |
| 414 | 456 | \noindent This function iterates $\textit{der}$ taking one character at
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 457 | the time from the original string until it is exhausted. | 
| 414 | 458 | Having $\textit{der}s$ in place, we can finally define our matching
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 459 | algorithm: | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 460 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 461 | \[ | 
| 414 | 462 | \textit{matches}\,s\,r \dn \textit{nullable}(\textit{ders}\,s\,r)
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 463 | \] | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 464 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 465 | \noindent | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 466 | and we can claim that | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 467 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 468 | \[ | 
| 414 | 469 | \textit{matches}\,s\,r\quad\text{if and only if}\quad s\in L(r)
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 470 | \] | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 471 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 472 | \noindent holds, which means our algorithm satisfies the | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 473 | specification. Of course we can claim many things\ldots | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 474 | whether the claim holds any water is a different question, | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 475 | which for example is the point of the Strand-2 Coursework. | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 476 | |
| 414 | 477 | This algorithm was introduced by Janus Brzozowski in 1964, but | 
| 478 | is more widely known only in the last 10 or so years. Its | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 479 | main attractions are simplicity and being fast, as well as | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 480 | being easily extendable for other regular expressions such as | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 481 | $r^{\{n\}}$, $r^?$, $\sim{}r$ and so on (this is subject of
 | 
| 414 | 482 | Strand-1 Coursework 1). | 
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 483 | |
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 484 | \subsection*{The Matching Algorithm in Scala}
 | 
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 485 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 486 | Another attraction of the algorithm is that it can be easily | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 487 | implemented in a functional programming language, like Scala. | 
| 296 
796b9b81ac8d
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
291diff
changeset | 488 | Given the implementation of regular expressions in Scala shown | 
| 
796b9b81ac8d
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
291diff
changeset | 489 | in the first lecture and handout, the functions and subfunctions | 
| 
796b9b81ac8d
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
291diff
changeset | 490 | for \pcode{matches} are shown in Figure~\ref{scala1}.
 | 
| 126 
7c7185cb4f2b
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
125diff
changeset | 491 | |
| 
7c7185cb4f2b
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
125diff
changeset | 492 | \begin{figure}[p]
 | 
| 477 | 493 | \lstinputlisting[numbers=left,linebackgroundcolor= | 
| 494 |                   {\ifodd\value{lstnumber}\color{capri!3}\fi}]
 | |
| 495 |                   {../progs/app5.scala}
 | |
| 412 | 496 | \caption{Scala implementation of the \textit{nullable} and 
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 497 | derivative functions. These functions are easy to | 
| 412 | 498 | implement in functional languages, because their built-in pattern | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 499 | matching and recursion allow us to mimic the mathematical | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 500 |   definitions very closely.\label{scala1}}
 | 
| 126 
7c7185cb4f2b
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
125diff
changeset | 501 | \end{figure}
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 502 | |
| 414 | 503 | |
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 504 | %Remember our second example involving the regular expression | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 505 | %$(a^*)^* \cdot b$ which could not match strings of $n$ \texttt{a}s. 
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 506 | %Java needed around 30 seconds to find this out a string with $n=28$. | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 507 | %It seems our algorithm is doing rather well in comparison: | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 508 | % | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 509 | %\begin{center}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 510 | %\begin{tikzpicture}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 511 | %\begin{axis}[
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 512 | %    title={Graph: $(a^*)^* \cdot b$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 513 | %    xlabel={$n$},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 514 | %    x label style={at={(1.05,0.0)}},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 515 | %    ylabel={time in secs},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 516 | % enlargelimits=false, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 517 | %    xtick={0,1000,...,6500},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 518 | % xmax=6800, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 519 | %    ytick={0,5,...,30},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 520 | % ymax=34, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 521 | % scaled ticks=false, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 522 | % axis lines=left, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 523 | % width=8cm, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 524 | % height=4.5cm, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 525 | %    legend entries={Java,Scala V1},  
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 526 | % legend pos=north east, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 527 | % legend cell align=left] | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 528 | %\addplot[cyan,mark=*, mark options={fill=white}] table {re-java.data};
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 529 | %\addplot[red,mark=triangle*,mark options={fill=white}] table {re1a.data};
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 530 | %\end{axis}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 531 | %\end{tikzpicture}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 532 | %\end{center}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 533 | % | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 534 | %\noindent | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 535 | %This is not an error: it hardly takes more than half a second for | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 536 | %strings up to the length of 6500. After that we receive a | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 537 | %StackOverflow exception, but still\ldots | 
| 414 | 538 | |
| 539 | For running the algorithm with our first example, the evil | |
| 394 
2f9fe225ecc8
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
343diff
changeset | 540 | regular expression $a^?{}^{\{n\}}a^{\{n\}}$, we need to implement
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 541 | the optional regular expression and the exactly $n$-times | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 542 | regular expression. This can be done with the translations | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 543 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 544 | \lstinputlisting[numbers=none]{../progs/app51.scala}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 545 | |
| 414 | 546 | \noindent Running the matcher with this example, we find it is | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 547 | slightly worse then the matcher in Ruby and Python. | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 548 | Ooops\ldots | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 549 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 550 | \begin{center}
 | 
| 414 | 551 | \begin{tikzpicture}
 | 
| 552 | \begin{axis}[    
 | |
| 415 | 553 |     title={Graph: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 414 | 554 |     xlabel={$n$},
 | 
| 555 |     x label style={at={(1.05,0.0)}},
 | |
| 556 |     ylabel={time in secs},
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 557 | enlargelimits=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 558 |     xtick={0,5,...,30},
 | 
| 415 | 559 | xmax=32, | 
| 414 | 560 |     ytick={0,5,...,30},
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 561 | scaled ticks=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 562 | axis lines=left, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 563 | width=6cm, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 564 | height=5cm, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 565 |     legend entries={Python,Ruby,Scala V1},  
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 566 | legend pos=outer north east, | 
| 415 | 567 | legend cell align=left] | 
| 434 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 568 | \addplot[blue,mark=*, mark options={fill=white}] table {re-python.data};
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 569 | \addplot[brown,mark=pentagon*, mark options={fill=white}] table {re-ruby.data};  
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 570 | \addplot[red,mark=triangle*,mark options={fill=white}] table {re1.data};  
 | 
| 414 | 571 | \end{axis}
 | 
| 572 | \end{tikzpicture}
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 573 | \end{center}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 574 | |
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 575 | \noindent Analysing this failure we notice that for | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 576 | $a^{\{n\}}$ we generate quite big regular expressions:
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 577 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 578 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 579 | \begin{tabular}{rl}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 580 | 1: & $a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 581 | 2: & $a\cdot a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 582 | 3: & $a\cdot a\cdot a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 583 | & \ldots\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 584 | 13: & $a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a$\\ | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 585 | & \ldots | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 586 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 587 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 588 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 589 | \noindent Our algorithm traverses such regular expressions at | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 590 | least once every time a derivative is calculated. So having | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 591 | large regular expressions will cause problems. This problem | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 592 | is aggravated by $a^?$ being represented as $a + \ONE$. | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 593 | |
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 594 | We can however fix this by having an explicit constructor for | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 595 | $r^{\{n\}}$. In Scala we would introduce a constructor like
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 596 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 597 | \begin{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 598 | \code{case class NTIMES(r: Rexp, n: Int) extends Rexp}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 599 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 600 | |
| 478 | 601 | \noindent With this fix we have a constant ``size'' regular expression | 
| 602 | for our running example no matter how large $n$ is (see the | |
| 603 | \texttt{size} section in the implementations).  This means we have to
 | |
| 604 | also add cases for \pcode{NTIMES} in the functions $\textit{nullable}$
 | |
| 605 | and $\textit{der}$. Does the change have any effect?
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 606 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 607 | \begin{center}
 | 
| 414 | 608 | \begin{tikzpicture}
 | 
| 609 | \begin{axis}[
 | |
| 415 | 610 |     title={Graph: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 414 | 611 |     xlabel={$n$},
 | 
| 612 |     x label style={at={(1.01,0.0)}},
 | |
| 613 |     ylabel={time in secs},
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 614 | enlargelimits=false, | 
| 477 | 615 |     xtick={0,200,...,1100},
 | 
| 616 | xmax=1200, | |
| 414 | 617 |     ytick={0,5,...,30},
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 618 | scaled ticks=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 619 | axis lines=left, | 
| 414 | 620 | width=10cm, | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 621 | height=5cm, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 622 |     legend entries={Python,Ruby,Scala V1,Scala V2},  
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 623 | legend pos=outer north east, | 
| 414 | 624 | legend cell align=left] | 
| 434 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 625 | \addplot[blue,mark=*, mark options={fill=white}] table {re-python.data};
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 626 | \addplot[brown,mark=pentagon*, mark options={fill=white}] table {re-ruby.data};  
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 627 | \addplot[red,mark=triangle*,mark options={fill=white}] table {re1.data};  
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 628 | \addplot[green,mark=square*,mark options={fill=white}] table {re2.data};
 | 
| 414 | 629 | \end{axis}
 | 
| 630 | \end{tikzpicture}
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 631 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 632 | |
| 478 | 633 | \noindent Now we are talking business! The modified matcher can within | 
| 634 | 25 seconds handle regular expressions up to $n = 1,100$ before a | |
| 635 | StackOverflow is raised. Recall that Python and Ruby (and our first | |
| 636 | version, Scala V1) could only handle $n = 27$ or so in 30 | |
| 637 | seconds. There is no change for our second example $(a^*)^* \cdot | |
| 638 | b$---so this is still good. | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 639 | |
| 412 | 640 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 641 | The moral is that our algorithm is rather sensitive to the | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 642 | size of regular expressions it needs to handle. This is of | 
| 414 | 643 | course obvious because both $\textit{nullable}$ and $\textit{der}$ frequently
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 644 | need to traverse the whole regular expression. There seems, | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 645 | however, one more issue for making the algorithm run faster. | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 646 | The derivative function often produces ``useless'' | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 647 | $\ZERO$s and $\ONE$s. To see this, consider $r = ((a | 
| 478 | 648 | \cdot b) + b)^*$ and the following three derivatives | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 649 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 650 | \begin{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 651 | \begin{tabular}{l}
 | 
| 414 | 652 | $\textit{der}\,a\,r = ((\ONE \cdot b) + \ZERO) \cdot r$\\
 | 
| 653 | $\textit{der}\,b\,r = ((\ZERO \cdot b) + \ONE)\cdot r$\\
 | |
| 654 | $\textit{der}\,c\,r = ((\ZERO \cdot b) + \ZERO)\cdot r$
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 655 | \end{tabular}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 656 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 657 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 658 | \noindent | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 659 | If we simplify them according to the simple rules from the | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 660 | beginning, we can replace the right-hand sides by the | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 661 | smaller equivalent regular expressions | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 662 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 663 | \begin{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 664 | \begin{tabular}{l}
 | 
| 414 | 665 | $\textit{der}\,a\,r \equiv b \cdot r$\\
 | 
| 666 | $\textit{der}\,b\,r \equiv r$\\
 | |
| 667 | $\textit{der}\,c\,r \equiv \ZERO$
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 668 | \end{tabular}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 669 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 670 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 671 | \noindent I leave it to you to contemplate whether such a | 
| 478 | 672 | simplification can have any impact on the correctness of our algorithm | 
| 673 | (will it change any answers?). Figure~\ref{scala2} gives a
 | |
| 674 | simplification function that recursively traverses a regular | |
| 675 | expression and simplifies it according to the rules given at the | |
| 676 | beginning. There are only rules for $+$, $\cdot$ and $n$-times (the | |
| 677 | latter because we added it in the second version of our | |
| 678 | matcher). There is no simplification rule for a star, because | |
| 679 | empirical data and also a little thought showed that simplifying under | |
| 680 | a star is a waste of computation time. The simplification function | |
| 681 | will be called after every derivation. This additional step removes | |
| 682 | all the ``junk'' the derivative function introduced. Does this improve | |
| 683 | the speed? You bet!! | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 684 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 685 | \begin{figure}[p]
 | 
| 477 | 686 | \lstinputlisting[numbers=left,linebackgroundcolor= | 
| 687 |   {\ifodd\value{lstnumber}\color{capri!3}\fi}]
 | |
| 688 |                 {../progs/app6.scala}
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 689 | \caption{The simplification function and modified 
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 690 | \texttt{ders}-function; this function now
 | 
| 333 
8890852e18b7
updated coursework
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
332diff
changeset | 691 | calls \texttt{der} first, but then simplifies
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 692 | the resulting derivative regular expressions before | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 693 | building the next derivative, see | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 694 | Line~\ref{simpline}.\label{scala2}}
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 695 | \end{figure}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 696 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 697 | \begin{center}
 | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 698 | \begin{tikzpicture}
 | 
| 414 | 699 | \begin{axis}[
 | 
| 415 | 700 |     title={Graph: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 414 | 701 |     xlabel={$n$},
 | 
| 702 |     x label style={at={(1.04,0.0)}},
 | |
| 703 |     ylabel={time in secs},
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 704 | enlargelimits=false, | 
| 478 | 705 |     xtick={0,2500,...,10000},
 | 
| 706 | xmax=12000, | |
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 707 |     ytick={0,5,...,30},
 | 
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 708 | ymax=32, | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 709 | scaled ticks=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 710 | axis lines=left, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 711 | width=9cm, | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 712 | height=5cm, | 
| 415 | 713 |     legend entries={Scala V2,Scala V3},
 | 
| 714 | legend pos=outer north east, | |
| 715 | legend cell align=left] | |
| 716 | \addplot[green,mark=square*,mark options={fill=white}] table {re2.data};
 | |
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 717 | \addplot[black,mark=square*,mark options={fill=white}] table {re3.data};
 | 
| 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 718 | \end{axis}
 | 
| 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 719 | \end{tikzpicture}
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 720 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 721 | |
| 415 | 722 | \noindent | 
| 478 | 723 | To reacap, Python and Ruby needed approximately 30 seconds to match a | 
| 724 | string of 28 \texttt{a}s and the regular expression $a^{?\{n\}} \cdot
 | |
| 725 | a^{\{n\}}$.  We need a third of this time to do the same with strings
 | |
| 726 | up to 11,000 \texttt{a}s.  Similarly, Java and Python needed 30
 | |
| 727 | seconds to find out the regular expression $(a^*)^* \cdot b$ does not | |
| 728 | match the string of 28 \texttt{a}s. We can do the same in
 | |
| 729 | for strings of 6,000,000 \texttt{a}s:
 | |
| 415 | 730 | |
| 731 | ||
| 414 | 732 | \begin{center}
 | 
| 733 | \begin{tikzpicture}
 | |
| 734 | \begin{axis}[
 | |
| 415 | 735 |     title={Graph: $(a^*)^* \cdot b$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 414 | 736 |     xlabel={$n$},
 | 
| 737 |     ylabel={time in secs},
 | |
| 738 | enlargelimits=false, | |
| 478 | 739 | ymax=35, | 
| 414 | 740 |     ytick={0,5,...,30},
 | 
| 741 | axis lines=left, | |
| 478 | 742 | scaled ticks=false, | 
| 743 |     x label style={at={(1.09,0.0)}},
 | |
| 744 | %xmax=7700000, | |
| 414 | 745 | width=9cm, | 
| 746 | height=5cm, | |
| 478 | 747 |     legend entries={Scala V3},
 | 
| 415 | 748 | legend pos=outer north east, | 
| 749 | legend cell align=left] | |
| 478 | 750 | %\addplot[green,mark=square*,mark options={fill=white}] table {re2a.data};
 | 
| 414 | 751 | \addplot[black,mark=square*,mark options={fill=white}] table {re3a.data};
 | 
| 752 | \end{axis}
 | |
| 753 | \end{tikzpicture}
 | |
| 754 | \end{center}
 | |
| 755 | ||
| 415 | 756 | \subsection*{Epilogue}
 | 
| 757 | ||
| 758 | (23/Aug/2016) I recently found another place where this algorithm can be | |
| 478 | 759 | sped up (this idea is not integrated with what is coming next, | 
| 415 | 760 | but I present it nonetheless). The idea is to define \texttt{ders}
 | 
| 761 | not such that it iterates the derivative character-by-character, but | |
| 762 | in bigger chunks. The resulting code for \texttt{ders2} looks as
 | |
| 763 | follows: | |
| 764 | ||
| 765 | \lstinputlisting[numbers=none]{../progs/app52.scala} 
 | |
| 766 | ||
| 767 | \noindent | |
| 768 | I have not fully understood why this version is much faster, | |
| 769 | but it seems it is a combination of the clauses for \texttt{ALT}
 | |
| 770 | and \texttt{SEQ}. In the latter case we call \texttt{der} with 
 | |
| 771 | a single character and this potentially produces an alternative. | |
| 772 | The derivative of such an alternative can then be more effeciently | |
| 773 | calculated by \texttt{ders2} since it pushes a whole string
 | |
| 774 | under an \texttt{ALT}. The numbers are that in the second case  
 | |
| 775 | $(a^*)^* \cdot b$ both versions are pretty much the same, but in the | |
| 776 | first case $a^{?\{n\}} \cdot a^{\{n\}}$ the improvement gives 
 | |
| 777 | another factor of 100 speedup. Nice! | |
| 414 | 778 | |
| 415 | 779 | \begin{center}
 | 
| 780 | \begin{tabular}{cc}
 | |
| 781 | \begin{tikzpicture}
 | |
| 782 | \begin{axis}[
 | |
| 783 |     title={Graph: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$},
 | |
| 784 |     xlabel={$n$},
 | |
| 785 |     x label style={at={(1.04,0.0)}},
 | |
| 786 |     ylabel={time in secs},
 | |
| 787 | enlargelimits=false, | |
| 788 | xmax=7100000, | |
| 789 |     ytick={0,5,...,30},
 | |
| 790 | ymax=33, | |
| 791 | %scaled ticks=false, | |
| 792 | axis lines=left, | |
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 793 | width=5.5cm, | 
| 415 | 794 | height=5cm, | 
| 795 |     legend entries={Scala V3, Scala V4},
 | |
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 796 |     legend style={at={(0.1,-0.2)},anchor=north}]
 | 
| 415 | 797 | \addplot[black,mark=square*,mark options={fill=white}] table {re3.data};
 | 
| 798 | \addplot[purple,mark=square*,mark options={fill=white}] table {re4.data};
 | |
| 799 | \end{axis}
 | |
| 800 | \end{tikzpicture}
 | |
| 801 | & | |
| 802 | \begin{tikzpicture}
 | |
| 803 | \begin{axis}[
 | |
| 804 |     title={Graph: $(a^*)^* \cdot b$ and strings $\underbrace{a\ldots a}_{n}$},
 | |
| 805 |     xlabel={$n$},
 | |
| 806 |     x label style={at={(1.09,0.0)}},
 | |
| 807 |     ylabel={time in secs},
 | |
| 808 | enlargelimits=false, | |
| 809 | xmax=8100000, | |
| 810 |     ytick={0,5,...,30},
 | |
| 811 | ymax=33, | |
| 812 | %scaled ticks=false, | |
| 813 | axis lines=left, | |
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 814 | width=5.5cm, | 
| 415 | 815 | height=5cm, | 
| 816 |     legend entries={Scala V3, Scala V4},
 | |
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 817 |     legend style={at={(0.1,-0.2)},anchor=north}]
 | 
| 415 | 818 | \addplot[black,mark=square*,mark options={fill=white}] table {re3a.data};
 | 
| 819 | \addplot[purple,mark=square*,mark options={fill=white}] table {re4a.data};
 | |
| 820 | \end{axis}
 | |
| 821 | \end{tikzpicture}
 | |
| 822 | \end{tabular}
 | |
| 823 | \end{center}
 | |
| 414 | 824 | |
| 412 | 825 | |
| 334 
fd89a63e9db3
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
333diff
changeset | 826 | \section*{Proofs}
 | 
| 
fd89a63e9db3
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
333diff
changeset | 827 | |
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 828 | You might not like doing proofs. But they serve a very | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 829 | important purpose in Computer Science: How can we be sure that | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 830 | our algorithm matches its specification. We can try to test | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 831 | the algorithm, but that often overlooks corner cases and an | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 832 | exhaustive testing is impossible (since there are infinitely | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 833 | many inputs). Proofs allow us to ensure that an algorithm | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 834 | really meets its specification. | 
| 338 
f16120cb4e19
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
334diff
changeset | 835 | |
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 836 | For the programs we look at in this module, the proofs will | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 837 | mostly by some form of induction. Remember that regular | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 838 | expressions are defined as | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 839 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 840 | \begin{center}
 | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 841 | \begin{tabular}{r@{\hspace{1mm}}r@{\hspace{1mm}}l@{\hspace{13mm}}l}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 842 | $r$ & $::=$ & $\ZERO$ & null language\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 843 |         & $\mid$ & $\ONE$           & empty string / \texttt{""} / []\\
 | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 844 | & $\mid$ & $c$ & single character\\ | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 845 | & $\mid$ & $r_1 + r_2$ & alternative / choice\\ | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 846 | & $\mid$ & $r_1 \cdot r_2$ & sequence\\ | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 847 | & $\mid$ & $r^*$ & star (zero or more)\\ | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 848 |   \end{tabular}
 | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 849 | \end{center}
 | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 850 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 851 | \noindent If you want to show a property $P(r)$ for all | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 852 | regular expressions $r$, then you have to follow essentially | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 853 | the recipe: | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 854 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 855 | \begin{itemize}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 856 | \item $P$ has to hold for $\ZERO$, $\ONE$ and $c$ | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 857 | (these are the base cases). | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 858 | \item $P$ has to hold for $r_1 + r_2$ under the assumption | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 859 | that $P$ already holds for $r_1$ and $r_2$. | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 860 | \item $P$ has to hold for $r_1 \cdot r_2$ under the | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 861 | assumption that $P$ already holds for $r_1$ and $r_2$. | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 862 | \item $P$ has to hold for $r^*$ under the assumption | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 863 | that $P$ already holds for $r$. | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 864 | \end{itemize}
 | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 865 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 866 | \noindent | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 867 | A simple proof is for example showing the following | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 868 | property: | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 869 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 870 | \begin{equation}
 | 
| 412 | 871 | \textit{nullable}(r) \;\;\text{if and only if}\;\; []\in L(r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 872 | \label{nullableprop}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 873 | \end{equation}
 | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 874 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 875 | \noindent | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 876 | Let us say that this property is $P(r)$, then the first case | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 877 | we need to check is whether $P(\ZERO)$ (see recipe | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 878 | above). So we have to show that | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 879 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 880 | \[ | 
| 412 | 881 | \textit{nullable}(\ZERO) \;\;\text{if and only if}\;\; 
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 882 | []\in L(\ZERO) | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 883 | \] | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 884 | |
| 412 | 885 | \noindent whereby $\textit{nullable}(\ZERO)$ is by definition of
 | 
| 886 | the function $\textit{nullable}$ always $\textit{false}$. We also have
 | |
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 887 | that $L(\ZERO)$ is by definition $\{\}$. It is
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 888 | impossible that the empty string $[]$ is in the empty set. | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 889 | Therefore also the right-hand side is false. Consequently we | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 890 | verified this case: both sides are false. We would still need | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 891 | to do this for $P(\ONE)$ and $P(c)$. I leave this to | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 892 | you to verify. | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 893 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 894 | Next we need to check the inductive cases, for example | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 895 | $P(r_1 + r_2)$, which is | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 896 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 897 | \begin{equation}
 | 
| 412 | 898 | \textit{nullable}(r_1 + r_2) \;\;\text{if and only if}\;\; 
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 899 | []\in L(r_1 + r_2) | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 900 | \label{propalt}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 901 | \end{equation}
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 902 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 903 | \noindent The difference to the base cases is that in this | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 904 | case we can already assume we proved | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 905 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 906 | \begin{center}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 907 | \begin{tabular}{l}
 | 
| 412 | 908 | $\textit{nullable}(r_1) \;\;\text{if and only if}\;\; []\in L(r_1)$ and\\
 | 
| 909 | $\textit{nullable}(r_2) \;\;\text{if and only if}\;\; []\in L(r_2)$\\
 | |
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 910 | \end{tabular}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 911 | \end{center}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 912 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 913 | \noindent These are the induction hypotheses. To check this | 
| 412 | 914 | case, we can start from $\textit{nullable}(r_1 + r_2)$, which by 
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 915 | definition is | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 916 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 917 | \[ | 
| 412 | 918 | \textit{nullable}(r_1) \vee \textit{nullable}(r_2)
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 919 | \] | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 920 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 921 | \noindent Using the two induction hypotheses from above, | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 922 | we can transform this into | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 923 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 924 | \[ | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 925 | [] \in L(r_1) \vee []\in(r_2) | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 926 | \] | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 927 | |
| 412 | 928 | \noindent We just replaced the $\textit{nullable}(\ldots)$ parts by
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 929 | the equivalent $[] \in L(\ldots)$ from the induction | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 930 | hypotheses. A bit of thinking convinces you that if | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 931 | $[] \in L(r_1) \vee []\in L(r_2)$ then the empty string | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 932 | must be in the union $L(r_1)\cup L(r_2)$, that is | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 933 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 934 | \[ | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 935 | [] \in L(r_1)\cup L(r_2) | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 936 | \] | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 937 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 938 | \noindent but this is by definition of $L$ exactly $[] \in | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 939 | L(r_1 + r_2)$, which we needed to establish according to | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 940 | \eqref{propalt}. What we have shown is that starting from
 | 
| 412 | 941 | $\textit{nullable}(r_1 + r_2)$ we have done equivalent transformations
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 942 | to end up with $[] \in L(r_1 + r_2)$. Consequently we have | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 943 | established that $P(r_1 + r_2)$ holds. | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 944 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 945 | In order to complete the proof we would now need to look | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 946 | at the cases \mbox{$P(r_1\cdot r_2)$} and $P(r^*)$. Again I let you
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 947 | check the details. | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 948 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 949 | You might have to do induction proofs over strings. | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 950 | That means you want to establish a property $P(s)$ for all | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 951 | strings $s$. For this remember strings are lists of | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 952 | characters. These lists can be either the empty list or a | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 953 | list of the form $c::s$. If you want to perform an induction | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 954 | proof for strings you need to consider the cases | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 955 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 956 | \begin{itemize}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 957 | \item $P$ has to hold for $[]$ (this is the base case). | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 958 | \item $P$ has to hold for $c::s$ under the assumption | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 959 | that $P$ already holds for $s$. | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 960 | \end{itemize}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 961 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 962 | \noindent | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 963 | Given this recipe, I let you show | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 964 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 965 | \begin{equation}
 | 
| 414 | 966 | \textit{Ders}\,s\,(L(r)) = L(\textit{ders}\,s\,r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 967 | \label{dersprop}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 968 | \end{equation}
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 969 | |
| 414 | 970 | \noindent by induction on $s$. Recall $\textit{Der}$ is defined for 
 | 
| 971 | character---see \eqref{Der}; $\textit{Ders}$ is similar, but for strings:
 | |
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 972 | |
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 973 | \[ | 
| 414 | 974 | \textit{Ders}\,s\,A\;\dn\;\{s'\,|\,s @ s' \in A\}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 975 | \] | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 976 | |
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 977 | \noindent In this proof you can assume the following property | 
| 414 | 978 | for $der$ and $\textit{Der}$ has already been proved, that is you can
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 979 | assume | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 980 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 981 | \[ | 
| 414 | 982 | L(\textit{der}\,c\,r) = \textit{Der}\,c\,(L(r))
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 983 | \] | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 984 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 985 | \noindent holds (this would be of course a property that | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 986 | needs to be proved in a side-lemma by induction on $r$). | 
| 338 
f16120cb4e19
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
334diff
changeset | 987 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 988 | To sum up, using reasoning like the one shown above allows us | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 989 | to show the correctness of our algorithm. To see this, | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 990 | start from the specification | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 991 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 992 | \[ | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 993 | s \in L(r) | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 994 | \] | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 995 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 996 | \noindent That is the problem we want to solve. Thinking a | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 997 | little, you will see that this problem is equivalent to the | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 998 | following problem | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 999 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1000 | \begin{equation}
 | 
| 414 | 1001 | [] \in \textit{Ders}\,s\,(L(r))
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1002 | \label{dersstep}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1003 | \end{equation}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1004 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1005 | \noindent But we have shown above in \eqref{dersprop}, that
 | 
| 414 | 1006 | the $\textit{Ders}$ can be replaced by $L(\textit{ders}\ldots)$. That means 
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1007 | \eqref{dersstep} is equivalent to 
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1008 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1009 | \begin{equation}
 | 
| 414 | 1010 | [] \in L(\textit{ders}\,s\,r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1011 | \label{prefinalstep}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1012 | \end{equation}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1013 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1014 | \noindent We have also shown that testing whether the empty | 
| 412 | 1015 | string is in a language is equivalent to the $\textit{nullable}$
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1016 | function; see \eqref{nullableprop}. That means
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1017 | \eqref{prefinalstep} is equivalent with
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1018 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1019 | \[ | 
| 414 | 1020 | \textit{nullable}(\textit{ders}\,s\,r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1021 | \] | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1022 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1023 | \noindent But this is just the definition of $matches$ | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1024 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1025 | \[ | 
| 414 | 1026 | matches\,s\,r \dn nullable(\textit{ders}\,s\,r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1027 | \] | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1028 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1029 | \noindent In effect we have shown | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1030 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1031 | \[ | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1032 | matches\,s\,r\;\;\text{if and only if}\;\;
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1033 | s\in L(r) | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1034 | \] | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1035 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1036 | \noindent which is the property we set out to prove: | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1037 | our algorithm meets its specification. To have done | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1038 | so, requires a few induction proofs about strings and | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1039 | regular expressions. Following the recipes is already a big | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1040 | step in performing these proofs. | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1041 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 1042 | \end{document}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 1043 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 1044 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 1045 | |
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1046 | |
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1047 | %%% Local Variables: | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1048 | %%% mode: latex | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1049 | %%% TeX-master: t | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1050 | %%% End: |