handouts/ho04.tex
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Sat, 06 Dec 2014 18:50:58 +0000
changeset 319 e7b110f93697
parent 296 796b9b81ac8d
child 326 94700593a2d5
permissions -rw-r--r--
updated
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
251
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
\documentclass{article}
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     2
\usepackage{../style}
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     3
\usepackage{../langs}
282
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
     4
\usepackage{../graphics}
251
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     5
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     6
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     7
\begin{document}
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     8
282
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
     9
\section*{Handout 4 (Sulzmann \& Lu Algorithm)}
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
    10
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
    11
So far our algorithm based on derivatives was only able to say
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
    12
yes or no depending on whether a string was matched by regular
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
    13
expression or not. Often a more interesting question is to
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
    14
find out \emph{how} a regular expression matched a string?
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    15
Answering this question will also help us with the problem we
319
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    16
are after, namely tokenising an input string. 
282
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
    17
319
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    18
The algorithm we will be looking at was designed by Sulzmann \& Lu in
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    19
a rather recent paper. A link to it is provided on KEATS, in case you
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    20
are interested.\footnote{In my humble opinion this is an interesting
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    21
  instance of the research literature: it contains a very neat idea,
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    22
  but its presentation is rather sloppy. In earlier versions of their
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    23
  paper, students and I found several rather annoying typos in their
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    24
  examples and definitions.}  In order to give an answer for how a
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    25
regular expression matched a string, Sulzmann and Lu introduce
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    26
\emph{values}. A value will be the output of the algorithm whenever
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    27
the regular expression matches the string. If the string does not
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    28
match the string, an error will be raised. Since the first phase of
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    29
the algorithm by Sulzmann \& Lu is identical to the derivative based
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    30
matcher from the first coursework, the function $nullable$ will be
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    31
used to decide whether as string is matched by a regular
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    32
expression. If $nullable$ says yes, then values are constructed that
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    33
reflect how the regular expression matched the string. The definitions
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    34
for regular expressions $r$ and values $v$ is shown next to each other
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    35
below:
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    36
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    37
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    38
\begin{tabular}{cc}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    39
\begin{tabular}{@{}rrl@{}}
319
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    40
\multicolumn{3}{c}{regular expressions}\medskip\\
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    41
  $r$ & $::=$  & $\varnothing$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    42
      & $\mid$ & $\epsilon$   \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    43
      & $\mid$ & $c$          \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    44
      & $\mid$ & $r_1 \cdot r_2$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    45
      & $\mid$ & $r_1 + r_2$   \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    46
  \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    47
      & $\mid$ & $r^*$         \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    48
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    49
&
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    50
\begin{tabular}{@{\hspace{0mm}}rrl@{}}
319
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    51
\multicolumn{3}{c}{values}\medskip\\
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    52
   $v$ & $::=$  & \\
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    53
      &        & $Empty$   \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    54
      & $\mid$ & $Char(c)$          \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    55
      & $\mid$ & $Seq(v_1,v_2)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    56
      & $\mid$ & $Left(v)$   \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    57
      & $\mid$ & $Right(v)$  \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    58
      & $\mid$ & $[v_1,\ldots\,v_n]$ \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    59
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    60
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    61
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    62
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    63
\noindent The point is that there is a very strong
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    64
correspondence between them. There is no value for the
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    65
$\varnothing$ regular expression, since it does not match any
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    66
string. Otherwise there is exactly one value corresponding to
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    67
each regular expression with the exception of $r_1 + r_2$
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    68
where there are two values, namely $Left(v)$ and $Right(v)$
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    69
corresponding to the two alternatives. Note that $r^*$ is
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    70
associated with a list of values, one for each copy of $r$
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    71
that was needed to match the string. This means we might also
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    72
return the empty list $[]$, if no copy was needed.
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    73
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    74
To emphasise the connection between regular expressions and
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    75
values, I have in my implementation the convention that
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    76
regular expressions are written entirely with upper-case
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    77
letters, while values just start with a single upper-case
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    78
character. My definition of values in Scala is below. I use 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    79
this in the REPL of Scala; when I use the Scala compiler
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    80
I need to rename some constructors, because Scala on Macs
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    81
does not like classes that are called \pcode{EMPTY} and
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    82
\pcode{Empty}.
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    83
 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    84
{\small\lstinputlisting[language=Scala,numbers=none]
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    85
{../progs/app02.scala}}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    86
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    87
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    88
Graphically the algorithm by Sulzmann \& Lu can be illustrated
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    89
by the picture in Figure~\ref{Sulz} where the path from the
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    90
left to the right involving $der/nullable$ is the first phase
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    91
of the algorithm and $mkeps/inj$, the path from right to left,
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    92
the second phase. This picture shows the steps required when a
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    93
regular expression, say $r_1$, matches the string $abc$. We
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    94
first build the three derivatives (according to $a$, $b$ and
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    95
$c$). We then use $nullable$ to find out whether the resulting
296
796b9b81ac8d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 288
diff changeset
    96
regular expression can match the empty string. If yes, we call
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    97
the function $mkeps$.
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    98
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    99
\begin{figure}[t]
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   100
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   101
\begin{tikzpicture}[scale=2,node distance=1.2cm,
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   102
                    every node/.style={minimum size=7mm}]
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   103
\node (r1)  {$r_1$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   104
\node (r2) [right=of r1]{$r_2$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   105
\draw[->,line width=1mm](r1)--(r2) node[above,midway] {$der\,a$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   106
\node (r3) [right=of r2]{$r_3$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   107
\draw[->,line width=1mm](r2)--(r3) node[above,midway] {$der\,b$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   108
\node (r4) [right=of r3]{$r_4$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   109
\draw[->,line width=1mm](r3)--(r4) node[above,midway] {$der\,c$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   110
\draw (r4) node[anchor=west] {\;\raisebox{3mm}{$nullable$}};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   111
\node (v4) [below=of r4]{$v_4$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   112
\draw[->,line width=1mm](r4) -- (v4);
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   113
\node (v3) [left=of v4] {$v_3$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   114
\draw[->,line width=1mm](v4)--(v3) node[below,midway] {$inj\,c$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   115
\node (v2) [left=of v3]{$v_2$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   116
\draw[->,line width=1mm](v3)--(v2) node[below,midway] {$inj\,b$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   117
\node (v1) [left=of v2] {$v_1$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   118
\draw[->,line width=1mm](v2)--(v1) node[below,midway] {$inj\,a$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   119
\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{$mkeps$}};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   120
\end{tikzpicture}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   121
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   122
\caption{The two phases of the algorithm by Sulzmann \& Lu.
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   123
\label{Sulz}}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   124
\end{figure}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   125
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   126
The $mkeps$ function calculates a value for how a regular
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   127
expression has matched the empty string. Its definition
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   128
is as follows:
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   129
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   130
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   131
\begin{tabular}{lcl}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   132
  $mkeps(\epsilon)$       & $\dn$ & $Empty$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   133
  $mkeps(r_1 + r_2)$      & $\dn$ & if $nullable(r_1)$  \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   134
                          &       & then $Left(mkeps(r_1))$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   135
                          &       & else $Right(mkeps(r_2))$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   136
  $mkeps(r_1 \cdot r_2)$  & $\dn$ & $Seq(mkeps(r_1),mkeps(r_2))$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   137
  $mkeps(r^*)$            & $\dn$ & $[]$  \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   138
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   139
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   140
296
796b9b81ac8d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 288
diff changeset
   141
\noindent There are no cases for $\varnothing$ and $c$, since
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   142
these regular expression cannot match the empty string. Note
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   143
also that in case of alternatives we give preference to the
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   144
regular expression on the left-hand side. This will become
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   145
important later on.
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   146
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   147
The second phase of the algorithm is organised so that it will
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   148
calculate a value for how the derivative regular expression
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   149
has matched a string whose first character has been chopped
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   150
off. Now we need a function that reverses this ``chopping
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   151
off'' for values. The corresponding function is called $inj$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   152
for injection. This function takes three arguments: the first
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   153
one is a regular expression for which we want to calculate the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   154
value, the second is the character we want to inject and the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   155
third argument is the value where we will inject the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   156
character. The result of this function is a new value. The
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   157
definition of $inj$ is as follows: 
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   158
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   159
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   160
\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   161
  $inj\,(c)\,c\,Empty$            & $\dn$  & $Char\,c$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   162
  $inj\,(r_1 + r_2)\,c\,Left(v)$  & $\dn$  & $Left(inj\,r_1\,c\,v)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   163
  $inj\,(r_1 + r_2)\,c\,Right(v)$ & $\dn$  & $Right(inj\,r_2\,c\,v)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   164
  $inj\,(r_1 \cdot r_2)\,c\,Seq(v_1,v_2)$ & $\dn$  & $Seq(inj\,r_1\,c\,v_1,v_2)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   165
  $inj\,(r_1 \cdot r_2)\,c\,Left(Seq(v_1,v_2))$ & $\dn$  & $Seq(inj\,r_1\,c\,v_1,v_2)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   166
  $inj\,(r_1 \cdot r_2)\,c\,Right(v)$ & $\dn$  & $Seq(mkeps(r_1),inj\,r_2\,c\,v)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   167
  $inj\,(r^*)\,c\,Seq(v,vs)$         & $\dn$  & $inj\,r\,c\,v\,::\,vs$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   168
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   169
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   170
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   171
\noindent This definition is by recursion on the regular
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   172
expression and by analysing the shape of the values. Therefore
296
796b9b81ac8d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 288
diff changeset
   173
there are, for example, three cases for sequence regular
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   174
expressions. The last clause for the star regular expression
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   175
returns a list where the first element is $inj\,r\,c\,v$ and
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   176
the other elements are $vs$. That means $\_\,::\,\_$ should be 
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   177
read as list cons.
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   178
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   179
To understand what is going on, it might be best to do some
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   180
example calculations and compare them with Figure~\ref{Sulz}.
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   181
For this note that we have not yet dealt with the need of
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   182
simplifying regular expressions (this will be a topic on its
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   183
own later). Suppose the regular expression is $a \cdot (b
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   184
\cdot c)$ and the input string is $abc$. The derivatives from
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   185
the first phase are as follows:
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   186
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   187
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   188
\begin{tabular}{ll}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   189
$r_1$: & $a \cdot (b \cdot c)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   190
$r_2$: & $\epsilon \cdot (b \cdot c)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   191
$r_3$: & $(\varnothing \cdot (b \cdot c)) + (\epsilon \cdot c)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   192
$r_4$: & $(\varnothing \cdot (b \cdot c)) + ((\varnothing \cdot c) + \epsilon)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   193
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   194
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   195
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   196
\noindent According to the simple algorithm, we would test
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   197
whether $r_4$ is nullable, which in this case it is. This
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   198
means we can use the function $mkeps$ to calculate a value for
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   199
how $r_4$ was able to match the empty string. Remember that
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   200
this function gives preference for alternatives on the
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   201
left-hand side. However there is only $\epsilon$ on the very
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   202
right-hand side of $r_4$ that matches the empty string.
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   203
Therefore $mkeps$ returns the value
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   204
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   205
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   206
$v_4:\;Right(Right(Empty))$
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   207
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   208
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   209
\noindent The point is that from this value we can directly
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   210
read off which part of $r_4$ matched the empty string. Next we
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   211
have to ``inject'' the last character, that is $c$ in the
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   212
running example, into this value $v_4$ in order to calculate
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   213
how $r_3$ could have matched the string $c$. According to the
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   214
definition of $inj$ we obtain
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   215
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   216
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   217
$v_3:\;Right(Seq(Empty, Char(c)))$
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   218
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   219
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   220
\noindent This is the correct result, because $r_3$ needs
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   221
to use the right-hand alternative, and then $\epsilon$ needs
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   222
to match the empty string and $c$ needs to match $c$.
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   223
Next we need to inject back the letter $b$ into $v_3$. This
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   224
gives
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   225
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   226
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   227
$v_2:\;Seq(Empty, Seq(Char(b), Char(c)))$
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   228
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   229
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   230
\noindent which is again the correct result for how $r_2$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   231
matched the string $bc$. Finally we need to inject back the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   232
letter $a$ into $v_2$ giving the final result
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   233
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   234
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   235
$v_1:\;Seq(Char(a), Seq(Char(b), Char(c)))$
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   236
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   237
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   238
\noindent This now corresponds to how the regular
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   239
expression $a \cdot (b \cdot c)$ matched the string $abc$.
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   240
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   241
There are a few auxiliary functions that are of interest
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   242
when analysing this algorithm. One is called \emph{flatten},
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   243
written $|\_|$, which extracts the string ``underlying'' a 
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   244
value. It is defined recursively as
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   245
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   246
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   247
\begin{tabular}{lcl}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   248
  $|Empty|$     & $\dn$ & $[]$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   249
  $|Char(c)|$   & $\dn$ & $[c]$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   250
  $|Left(v)|$   & $\dn$ & $|v|$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   251
  $|Right(v)|$  & $\dn$ & $|v|$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   252
  $|Seq(v_1,v_2)|$& $\dn$ & $|v_1| \,@\, |v_2|$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   253
  $|[v_1,\ldots ,v_n]|$ & $\dn$ & $|v_1| \,@\ldots @\, |v_n|$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   254
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   255
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   256
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   257
\noindent Using flatten we can see what is the string behind 
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   258
the values calculated by $mkeps$ and $inj$ in our running 
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   259
example are:
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   260
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   261
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   262
\begin{tabular}{ll}
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   263
$|v_4|$: & $[]$\\
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   264
$|v_3|$: & $c$\\
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   265
$|v_2|$: & $bc$\\
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   266
$|v_1|$: & $abc$
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   267
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   268
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   269
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   270
\noindent This indicates that $inj$ indeed is injecting, or
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   271
adding, back a character into the value. Next we look at how
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   272
simplification can be included into this algorithm.
282
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
   273
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
   274
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   275
\subsubsection*{Simplification}
282
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
   276
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   277
Generally the matching algorithms based on derivatives do
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   278
poorly unless the regular expressions are simplified after
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   279
each derivative step. But this is a bit more involved in the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   280
algorithm of Sulzmann \& Lu. So what follows might require you
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   281
to read several times before it makes sense and also might
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   282
require that you do some example calculations. As a first
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   283
example consider the last derivation step in our earlier
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   284
example:
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   285
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   286
\begin{center}
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   287
$r_4 = der\,c\,r_3 = 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   288
(\varnothing \cdot (b \cdot c)) + ((\varnothing \cdot c) + \epsilon)$
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   289
\end{center}
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   290
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   291
\noindent Simplifying this regular expression would just give
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   292
us $\epsilon$. Running $mkeps$ with this regular expression as
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   293
input, however, would then provide us with $Empty$ instead of
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   294
$Right(Right(Empty))$ that was obtained without the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   295
simplification. The problem is we need to recreate this more
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   296
complicated value, rather than just $Empty$.
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   297
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   298
This will require what I call \emph{rectification functions}.
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   299
They need to be calculated whenever a regular expression gets
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   300
simplified. Rectification functions take a value as argument
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   301
and return a (rectified) value. Let us first take a look again
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   302
at our simplification rules:
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   303
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   304
\begin{center}
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   305
\begin{tabular}{l@{\hspace{2mm}}c@{\hspace{2mm}}l}
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   306
$r \cdot \varnothing$ & $\mapsto$ & $\varnothing$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   307
$\varnothing \cdot r$ & $\mapsto$ & $\varnothing$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   308
$r \cdot \epsilon$ & $\mapsto$ & $r$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   309
$\epsilon \cdot r$ & $\mapsto$ & $r$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   310
$r + \varnothing$ & $\mapsto$ & $r$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   311
$\varnothing + r$ & $\mapsto$ & $r$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   312
$r + r$ & $\mapsto$ & $r$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   313
\end{tabular}
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   314
\end{center}
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   315
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   316
\noindent Applying them to $r_4$ will require several nested
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   317
simplifications in order end up with just $\epsilon$. However,
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   318
it is possible to apply them in a depth-first, or inside-out,
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   319
manner in order to calculate this simplified regular
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   320
expression.
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   321
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   322
The rectification we can implement this by letting simp return
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   323
not just a (simplified) regular expression, but also a
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   324
rectification function. Let us consider the alternative case,
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   325
$r_1 + r_2$, first. By going depth-first, we first simplify
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   326
the component regular expressions $r_1$ and $r_2.$ This will
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   327
return simplified versions (if they can be simplified), say
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   328
$r_{1s}$ and $r_{2s}$, but also two rectification functions
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   329
$f_{1s}$ and $f_{2s}$. We need to assemble them in order to
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   330
obtain a rectified value for $r_1 + r_2$. In case $r_{1s}$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   331
simplified to $\varnothing$, we continue the derivative
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   332
calculation with $r_{2s}$. The Sulzmann \& Lu algorithm would
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   333
return a corresponding value, say $v_{2s}$. But now this value
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   334
needs to be ``rectified'' to the value 
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   335
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   336
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   337
$Right(v_{2s})$
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   338
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   339
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   340
\noindent The reason is that we look for the value that tells
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   341
us how $r_1 + r_2$ could have matched the string, not just
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   342
$r_2$ or $r_{2s}$. Unfortunately, this is still not the right
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   343
value in general because there might be some simplifications
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   344
that happened inside $r_2$ and for which the simplification
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   345
function retuned also a rectification function $f_{2s}$. So in
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   346
fact we need to apply this one too which gives
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   347
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   348
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   349
$Right(f_{2s}(v_{2s}))$
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   350
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   351
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   352
\noindent This is now the correct, or rectified, value. Since
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   353
the simplification will be done in the first phase of the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   354
algorithm, but the rectification needs to be done to the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   355
values in the second phase, it is advantageous to calculate
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   356
the rectification as a function, remember this function and
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   357
then apply the value to this function during the second phase.
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   358
So if we want to implement the rectification as function, we 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   359
would need to return
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   360
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   361
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   362
$\lambda v.\,Right(f_{2s}(v))$
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   363
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   364
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   365
\noindent which is the lambda-calculus notation for
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   366
a function that expects a value $v$ and returns everything
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   367
after the dot where $v$ is replaced by whatever value is 
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   368
given.
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   369
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   370
Let us package this idea with rectification functions
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   371
into a single function (still only considering the alternative
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   372
case):
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   373
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   374
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   375
\begin{tabular}{l}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   376
$simp(r)$:\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   377
\quad case $r = r_1 + r_2$\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   378
\qquad let $(r_{1s}, f_{1s}) = simp(r_1)$\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   379
\qquad \phantom{let} $(r_{2s}, f_{2s}) = simp(r_2)$\smallskip\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   380
\qquad case $r_{1s} = \varnothing$: 
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   381
       return $(r_{2s}, \lambda v. \,Right(f_{2s}(v)))$\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   382
\qquad case $r_{2s} = \varnothing$: 
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   383
       return $(r_{1s}, \lambda v. \,Left(f_{1s}(v)))$\\
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   384
\qquad case $r_{1s} = r_{2s}$:
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   385
       return $(r_{1s}, \lambda v. \,Left(f_{1s}(v)))$\\
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   386
\qquad otherwise: 
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   387
       return $(r_{1s} + r_{2s}, f_{alt}(f_{1s}, f_{2s}))$\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   388
\end{tabular}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   389
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   390
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   391
\noindent We first recursively call the simplification with
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   392
$r_1$ and $r_2$. This gives simplified regular expressions,
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   393
$r_{1s}$ and $r_{2s}$, as well as two rectification functions
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   394
$f_{1s}$ and $f_{2s}$. We next need to test whether the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   395
simplified regular expressions are $\varnothing$ so as to make
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   396
further simplifications. In case $r_{1s}$ is $\varnothing$,
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   397
then we can return $r_{2s}$ (the other alternative). However
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   398
for this we need to build a corresponding rectification 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   399
function, which as said above is
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   400
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   401
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   402
$\lambda v.\,Right(f_{2s}(v))$
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   403
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   404
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   405
\noindent The case where $r_{2s} = \varnothing$ is similar:
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   406
We return $r_{1s}$ and rectify with $Left(\_)$ and the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   407
other calculated rectification function $f_{1s}$. This gives
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   408
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   409
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   410
$\lambda v.\,Left(f_{1s}(v))$
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   411
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   412
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   413
\noindent The next case where $r_{1s} = r_{2s}$ can be treated
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   414
like the one where $r_{2s} = \varnothing$. We return $r_{1s}$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   415
and rectify with $Left(\_)$ and so on.
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   416
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   417
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   418
The otherwise-case is slightly more complicated. In this case
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   419
neither $r_{1s}$ nor $r_{2s}$ are $\varnothing$ and also
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   420
$r_{1s} \not= r_{2s}$, which means no further simplification
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   421
can be applied. Accordingly, we return $r_{1s} + r_{2s}$ as
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   422
the simplified regular expression. In principle we also do not
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   423
have to do any rectification, because no simplification was
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   424
done in this case. But this is actually not true: There might
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   425
have been simplifications inside $r_{1s}$ and $r_{2s}$. We
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   426
therefore need to take into account the calculated
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   427
rectification functions $f_{1s}$ and $f_{2s}$. We can do this
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   428
by defining a rectification function $f_{alt}$ which takes two
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   429
rectification functions as arguments and applies them
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   430
according to whether the value is of the form $Left(\_)$ or
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   431
$Right(\_)$:
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   432
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   433
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   434
\begin{tabular}{l@{\hspace{1mm}}l}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   435
$f_{alt}(f_1, f_2) \dn$\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   436
\qquad $\lambda v.\,$ case $v = Left(v')$: 
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   437
      & return $Left(f_1(v'))$\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   438
\qquad \phantom{$\lambda v.\,$} case $v = Right(v')$: 
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   439
      & return $Right(f_2(v'))$\\      
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   440
\end{tabular}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   441
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   442
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   443
The other interesting case with simplification is the sequence
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   444
case. In this case the main simplification function is as
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   445
follows
286
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   446
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   447
\begin{center}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   448
\begin{tabular}{l}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   449
$simp(r)$:\qquad\qquad (continued)\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   450
\quad case $r = r_1 \cdot r_2$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   451
\qquad let $(r_{1s}, f_{1s}) = simp(r_1)$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   452
\qquad \phantom{let} $(r_{2s}, f_{2s}) = simp(r_2)$\smallskip\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   453
\qquad case $r_{1s} = \varnothing$: 
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   454
       return $(\varnothing, f_{error})$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   455
\qquad case $r_{2s} = \varnothing$: 
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   456
       return $(\varnothing, f_{error})$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   457
\qquad case $r_{1s} = \epsilon$: 
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   458
return $(r_{2s}, \lambda v. \,Seq(f_{1s}(Empty), f_{2s}(v)))$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   459
\qquad case $r_{2s} = \epsilon$: 
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   460
return $(r_{1s}, \lambda v. \,Seq(f_{1s}(v), f_{2s}(Empty)))$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   461
\qquad otherwise: 
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   462
       return $(r_{1s} \cdot r_{2s}, f_{seq}(f_{1s}, f_{2s}))$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   463
\end{tabular}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   464
\end{center}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   465
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   466
\noindent whereby in the last line $f_{seq}$ is again pushing
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   467
the two rectification functions into the two components of the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   468
Seq-value:
286
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   469
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   470
\begin{center}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   471
\begin{tabular}{l@{\hspace{1mm}}l}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   472
$f_{seq}(f_1, f_2) \dn$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   473
\qquad $\lambda v.\,$ case $v = Seq(v_1, v_2)$: 
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   474
      & return $Seq(f_1(v_1), f_2(v_2))$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   475
\end{tabular}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   476
\end{center}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   477
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   478
\noindent Note that in the case of $r_{1s} = \varnothing$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   479
(similarly $r_{2s}$) we use the function $f_{error}$ for
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   480
rectification. If you think carefully, then you will realise
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   481
that this function will actually never been called. This is
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   482
because a sequence with $\varnothing$ will never recognise any
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   483
string and therefore the second phase of the algorithm would
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   484
never been called. The simplification function still expects
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   485
us to give a function. So in my own implementation I just
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   486
returned a function which raises an error. In the case
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   487
where $r_{1s} = \epsilon$ (similarly $r_{2s}$) we have
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   488
to create a sequence where the first component is a rectified
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   489
version of $Empty$. Therefore we call $f_{1s}$ with $Empty$.
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   490
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   491
Since we only simplify regular expressions of the form $r_1 +
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   492
r_2$ and $r_1 \cdot r_2$ we do not have to do anything else
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   493
in the remaining cases. The rectification function will
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   494
be just the identity, which in lambda-calculus terms is
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   495
just
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   496
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   497
\begin{center}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   498
$\lambda v.\,v$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   499
\end{center}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   500
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   501
\noindent This completes the high-level version of the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   502
simplification function, which is also shown again in 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   503
Figure~\ref{simp}. This can now be used in a \emph{lexing
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   504
function} as follows:
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   505
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   506
\begin{figure}[t]
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   507
\begin{center}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   508
\begin{tabular}{l}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   509
$simp(r)$:\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   510
\quad case $r = r_1 + r_2$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   511
\qquad let $(r_{1s}, f_{1s}) = simp(r_1)$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   512
\qquad \phantom{let} $(r_{2s}, f_{2s}) = simp(r_2)$\smallskip\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   513
\qquad case $r_{1s} = \varnothing$: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   514
       return $(r_{2s}, \lambda v. \,Right(f_{2s}(v)))$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   515
\qquad case $r_{2s} = \varnothing$: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   516
       return $(r_{1s}, \lambda v. \,Left(f_{1s}(v)))$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   517
\qquad case $r_{1s} = r_{2s}$:
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   518
       return $(r_{1s}, \lambda v. \,Left(f_{1s}(v)))$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   519
\qquad otherwise: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   520
       return $(r_{1s} + r_{2s}, f_{alt}(f_{1s}, f_{2s}))$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   521
       \medskip\\
286
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   522
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   523
\quad case $r = r_1 \cdot r_2$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   524
\qquad let $(r_{1s}, f_{1s}) = simp(r_1)$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   525
\qquad \phantom{let} $(r_{2s}, f_{2s}) = simp(r_2)$\smallskip\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   526
\qquad case $r_{1s} = \varnothing$: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   527
       return $(\varnothing, f_{error})$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   528
\qquad case $r_{2s} = \varnothing$: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   529
       return $(\varnothing, f_{error})$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   530
\qquad case $r_{1s} = \epsilon$: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   531
return $(r_{2s}, \lambda v. \,Seq(f_{1s}(Empty), f_{2s}(v)))$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   532
\qquad case $r_{2s} = \epsilon$: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   533
return $(r_{1s}, \lambda v. \,Seq(f_{1s}(v), f_{2s}(Empty)))$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   534
\qquad otherwise: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   535
       return $(r_{1s} \cdot r_{2s}, f_{seq}(f_{1s}, f_{2s}))$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   536
       \medskip\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   537
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   538
\quad otherwise:\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   539
\qquad return $(r, \lambda v.\,v)$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   540
\end{tabular}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   541
\end{center}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   542
\caption{The simplification function that returns a simplified 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   543
regular expression and a rectification function.\label{simp}}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   544
\end{figure}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   545
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   546
\begin{center}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   547
\begin{tabular}{lcl}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   548
$lex\,r\,[]$ & $\dn$ & if $nullable(r)$ then $mkeps(r)$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   549
             &       & else $error$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   550
$lex\,r\,c\!::\!s$ & $\dn$ & let 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   551
   $(r_{simp}, f_{rect}) = simp(der(c, r))$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   552
& & $inj\,r\,c\,f_{rect}(lex\,r_{simp}\,s)$              
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   553
\end{tabular}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   554
\end{center}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   555
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   556
\noindent This corresponds to the $matches$ function we
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   557
have seen in earlier lectures. In the first clause we are
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   558
given an empty string, $[]$, and need to test wether the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   559
regular expression is $nullable$. If yes we can proceed
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   560
normally and just return the value calculated by $mkeps$.
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   561
The second clause is for strings where the first character is
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   562
$c$ and the rest of the string is $s$. We first build the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   563
derivative of $r$ with respect to $c$; simplify the resulting 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   564
regulare expression. We continue lexing with the simplified
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   565
regular expression and the string $s$. Whatever will be
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   566
returned as value, we sill rectify using the $f_{rect}$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   567
from the simplification and finally inject $c$ back into
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   568
the (rectified) value.
286
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   569
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   570
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   571
\subsubsection*{Records}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   572
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   573
Remember we want to tokenize input strings, that means
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   574
splitting strings into their ``word'' components. But
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   575
furthermore we want to classify each token as being a keyword
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   576
or identifier and so on. For this one more feature will be
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   577
required, which I call \emph{record}. While values record
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   578
precisely how a regular expression matches a string, 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   579
records can be used to focus on some particular
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   580
parts of the regular expression and forget about others.
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   581
Let us look at an example. 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   582
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   583
Suppose you have the regular expression $ab + ac$. Clearly
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   584
this regular expression can only recognise two strings. But
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   585
suppose you are not interested whether it can recognise $ab$
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   586
or $ac$, but rather if it matched, then what was the last
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   587
character of the matched string\ldots either $b$ or $c$.
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   588
You can do this by annotating the regular expression with
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   589
a record, written $(x:r)$, where $x$ is just an identifier
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   590
(in my implementation a plain string) and $r$ is a regular
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   591
expression. A record will be regarded as a regular expression.
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   592
The extended definition in Scala looks as follows:
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   593
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   594
{\small\lstinputlisting[language=Scala]
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   595
{../progs/app03.scala}}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   596
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   597
\noindent Since we regard records as regular expressions
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   598
we need to extend the functions $nullable$ and $der$. 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   599
Similarly $mkeps$ and $inj$ need to be extended and they 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   600
sometimes can return a particular value for records. 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   601
This means we also need to extend the definition of values.
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   602
The extended definition in Scala looks as follows:
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   603
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   604
{\small\lstinputlisting[language=Scala]
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   605
{../progs/app04.scala}}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   606
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   607
\noindent Let us now look at the purpose of records more
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   608
closely and lets return to our question whether the string
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   609
terminated in a $b$ or $c$. We can do this as follows: we
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   610
annotate the regular expression $ab + ac$ with a record
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   611
as follows
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   612
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   613
\begin{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   614
$a(x:b) + a(x:c)$
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   615
\end{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   616
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   617
\noindent This regular expression can still only recognise
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   618
the strings $ab$ and $ac$, but we can now use a function
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   619
that takes a value and returns all records. I call this
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   620
function \emph{env} for environment\ldots it builds a list
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   621
of identifiers associated with their string. This function
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   622
can be defined as follows:
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   623
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   624
\begin{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   625
\begin{tabular}{lcl}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   626
  $env(Empty)$     & $\dn$ & $[]$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   627
  $env(Char(c))$   & $\dn$ & $[]$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   628
  $env(Left(v))$   & $\dn$ & $env(v)$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   629
  $env(Right(v))$  & $\dn$ & $env(v)$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   630
  $env(Seq(v_1,v_2))$& $\dn$ & $env(v_1) \,@\, env(v_2)$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   631
  $env([v_1,\ldots ,v_n])$ & $\dn$ & 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   632
     $env(v_1) \,@\ldots @\, env(v_n)$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   633
  $env(Rec(x:v))$ & $\dn$ & $(x:|v|) :: env(v)$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   634
\end{tabular}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   635
\end{center}
251
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   636
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   637
\noindent where in the last clause we use the flatten function 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   638
defined earlier. The function $env$ ``picks'' out all 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   639
underlying strings where a record is given. Since there can be 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   640
more than one, the environment will potentially contain
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   641
many ``recordings''. If we now postprocess the value 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   642
calculated by $lex$ extracting all recordings using $env$, 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   643
we can answer the question whether the last element in the
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   644
string was an $b$ or a $c$. Lets see this in action: if
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   645
we use $ab + ac$ and $ac$ the calculated value will be
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   646
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   647
\begin{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   648
$Right(Seq(Char(a), Char(c)))$
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   649
\end{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   650
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   651
\noindent If we use instead $a(x:b) + a(x:c)$ and
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   652
use the $env$ function to extract the recording for 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   653
$x$ we obtain
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   654
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   655
\begin{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   656
$[(x:c)]$
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   657
\end{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   658
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   659
\noindent If we had given the string $ab$ instead, then the
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   660
record would have been $[(x:b)]$. The fun starts if we 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   661
iterate this. Consider the regular expression 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   662
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   663
\begin{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   664
$(a(x:b) + a(y:c))^*$
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   665
\end{center}
251
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   666
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   667
\noindent and the string $ababacabacab$. This string is 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   668
clearly matched by the regular expression, but we are only
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   669
interested in the sequence of $b$s and $c$s. Using $env$
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   670
we obtain
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   671
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   672
\begin{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   673
$[(x:b), (x:b), (y:c), (x:b), (y:c), (x:b)]$
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   674
\end{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   675
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   676
\noindent While this feature might look silly, it is in fact
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   677
quite useful. For example if we want to match the name of
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   678
an email we might use the regular expression
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   679
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   680
\[
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   681
(name: [a\mbox{-}z0\mbox{-}9\_\!\_\,.-]^+)\cdot @\cdot 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   682
(domain: [a\mbox{-}z0\mbox{-}9\,.-]^+)\cdot .\cdot 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   683
(top\_level: [a\mbox{-}z\,.]^{\{2,6\}})
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   684
\]
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   685
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   686
\noindent Then if we match the email address
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   687
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   688
\[
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   689
\texttt{christian.urban@kcl.ac.uk}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   690
\]
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   691
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   692
\noindent we can use the $env$ function and find out
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   693
what the name, domain and top-level part of the email
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   694
address are:
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   695
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   696
\begin{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   697
$[(name:\texttt{christian.urban}), 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   698
  (domain:\texttt{kcl}), 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   699
  (top\_level:\texttt{ac.uk})]$
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   700
\end{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   701
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   702
\noindent As you will see in the next lecture, this is now all
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   703
we need to tokenise an input string and classify each token.
251
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   704
\end{document}
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   705
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   706
%%% Local Variables: 
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   707
%%% mode: latex
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   708
%%% TeX-master: t
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   709
%%% End: