| author | Christian Urban <christian.urban@kcl.ac.uk> | 
| Fri, 22 Nov 2024 12:42:07 +0000 | |
| changeset 973 | db987b9717a4 | 
| parent 960 | 791f4d9f53e1 | 
| child 998 | 5dc412b9a7fd | 
| permissions | -rw-r--r-- | 
| 646 | 1 | % !TEX program = xelatex | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 2 | \documentclass{article}
 | 
| 251 
5b5a68df6d16
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
217diff
changeset | 3 | \usepackage{../style}
 | 
| 217 
cd6066f1056a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
140diff
changeset | 4 | \usepackage{../langs}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 5 | \usepackage{../graphics}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 6 | \usepackage{../data}
 | 
| 480 | 7 | |
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 8 | |
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 9 | \begin{document}
 | 
| 727 | 10 | \fnote{\copyright{} Christian Urban, King's College London, 
 | 
| 960 | 11 | 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024} | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 12 | |
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 13 | |
| 272 
1446bc47a294
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
268diff
changeset | 14 | \section*{Handout 2 (Regular Expression Matching)}
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 15 | |
| 757 | 16 | %\noindent | 
| 17 | %{\bf Checklist}
 | |
| 18 | % | |
| 19 | %\begin{itemize}
 | |
| 20 | % \item You have understood the derivative-based matching algorithm. | |
| 21 | % \item You know how the derivative is related to the meaning of regular | |
| 22 | % expressions. | |
| 23 | % \item You can extend the algorithm to non-basic regular expressions. | |
| 24 | %\end{itemize}\bigskip\bigskip\bigskip
 | |
| 727 | 25 | |
| 26 | \noindent | |
| 412 | 27 | This lecture is about implementing a more efficient regular expression | 
| 478 | 28 | matcher (the plots on the right below)---more efficient than the | 
| 925 | 29 | matchers from regular expression libraries in Ruby, Python, JavaScript, Swift | 
| 831 | 30 | and Java (the plots on the left).\footnote{Have a look at KEATS: students
 | 
| 925 | 31 | last year contributed also data for the Dart language.}\medskip | 
| 831 | 32 | |
| 33 | \noindent | |
| 34 | To start with let us look more closely at the experimental data: The | |
| 35 | first pair of plots shows the running time for the regular expression | |
| 36 | $(a^*)^*\cdot b$ and strings composed of $n$ \pcode{a}s, like
 | |
| 727 | 37 | \[ | 
| 764 | 38 | \underbrace{\pcode{a}\ldots\pcode{a}}_{n} 
 | 
| 727 | 39 | \] | 
| 40 | ||
| 41 | \noindent | |
| 42 | This means the regular expression actually does not match the strings. | |
| 43 | The second pair of plots shows the running time for the regular | |
| 44 | expressions of the form $a^?{}^{\{n\}}\cdot a^{\{n\}}$ and corresponding
 | |
| 45 | strings composed of $n$ \pcode{a}s (this time the regular expressions
 | |
| 46 | match the strings). To see the substantial differences in the left and | |
| 931 | 47 | right plots below, note the different scales of the $x$-axis. | 
| 478 | 48 | |
| 510 | 49 | |
| 478 | 50 | \begin{center}
 | 
| 51 | Graphs: $(a^*)^* \cdot b$ and strings $\underbrace{a\ldots a}_{n}$
 | |
| 52 | \begin{tabular}{@{}cc@{}}
 | |
| 550 | 53 | \begin{tikzpicture}[baseline=(current bounding box.north)]
 | 
| 54 |   \begin{axis}[
 | |
| 478 | 55 |     xlabel={$n$},
 | 
| 56 |     x label style={at={(1.05,0.0)}},
 | |
| 57 |     ylabel={time in secs},
 | |
| 58 | enlargelimits=false, | |
| 59 |     xtick={0,5,...,30},
 | |
| 60 | xmax=33, | |
| 61 | ymax=35, | |
| 62 |     ytick={0,5,...,30},
 | |
| 63 | scaled ticks=false, | |
| 64 | axis lines=left, | |
| 65 | width=5cm, | |
| 925 | 66 | height=4.5cm, | 
| 67 |     legend entries={Java 8, Python, JavaScript, Swift},  
 | |
| 478 | 68 | legend pos=north west, | 
| 69 | legend cell align=left] | |
| 70 | \addplot[blue,mark=*, mark options={fill=white}] table {re-python2.data};
 | |
| 71 | \addplot[cyan,mark=*, mark options={fill=white}] table {re-java.data};
 | |
| 618 | 72 | \addplot[red,mark=*, mark options={fill=white}] table {re-js.data};
 | 
| 925 | 73 | \addplot[magenta,mark=*, mark options={fill=white}] table {re-swift.data};
 | 
| 478 | 74 | \end{axis}
 | 
| 75 | \end{tikzpicture}
 | |
| 76 | & | |
| 550 | 77 | \begin{tikzpicture}[baseline=(current bounding box.north)]
 | 
| 478 | 78 |   \begin{axis}[
 | 
| 79 |     xlabel={$n$},
 | |
| 488 | 80 |     x label style={at={(1.1,0.0)}},
 | 
| 81 |     %%xtick={0,1000000,...,5000000}, 
 | |
| 478 | 82 |     ylabel={time in secs},
 | 
| 83 | enlargelimits=false, | |
| 84 | ymax=35, | |
| 85 |     ytick={0,5,...,30},
 | |
| 86 | axis lines=left, | |
| 488 | 87 | %scaled ticks=false, | 
| 478 | 88 | width=6.5cm, | 
| 925 | 89 | height=4.5cm, | 
| 488 | 90 |     legend entries={Our matcher},  
 | 
| 478 | 91 | legend pos=north east, | 
| 92 | legend cell align=left] | |
| 93 | %\addplot[green,mark=square*,mark options={fill=white}] table {re2a.data};    
 | |
| 94 | \addplot[black,mark=square*,mark options={fill=white}] table {re3a.data};
 | |
| 95 | \end{axis}
 | |
| 96 | \end{tikzpicture}
 | |
| 97 | \end{tabular}
 | |
| 488 | 98 | \end{center}\bigskip
 | 
| 263 
92e6985018ae
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
262diff
changeset | 99 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 100 | \begin{center}
 | 
| 415 | 101 | Graphs: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$\\
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 102 | \begin{tabular}{@{}cc@{}}
 | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 103 | \begin{tikzpicture}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 104 | \begin{axis}[
 | 
| 414 | 105 |     xlabel={$n$},
 | 
| 106 |     x label style={at={(1.05,0.0)}},
 | |
| 412 | 107 |     ylabel={\small time in secs},
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 108 | enlargelimits=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 109 |     xtick={0,5,...,30},
 | 
| 291 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 110 | xmax=33, | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 111 | ymax=35, | 
| 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 112 |     ytick={0,5,...,30},
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 113 | scaled ticks=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 114 | axis lines=left, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 115 | width=5cm, | 
| 925 | 116 | height=4.55cm, | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 117 |     legend entries={Python,Ruby},  
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 118 | legend pos=north west, | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 119 | legend cell align=left] | 
| 434 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 120 | \addplot[blue,mark=*, mark options={fill=white}] table {re-python.data};
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 121 | \addplot[brown,mark=triangle*, mark options={fill=white}] table {re-ruby.data};  
 | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 122 | \end{axis}
 | 
| 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 123 | \end{tikzpicture}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 124 | & | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 125 | \begin{tikzpicture}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 126 |   \begin{axis}[
 | 
| 414 | 127 |     xlabel={$n$},
 | 
| 128 |     x label style={at={(1.1,0.05)}},
 | |
| 412 | 129 |     ylabel={\small time in secs},
 | 
| 130 | enlargelimits=false, | |
| 477 | 131 |     xtick={0,2500,...,11000},
 | 
| 132 | xmax=12000, | |
| 412 | 133 | ymax=35, | 
| 134 |     ytick={0,5,...,30},
 | |
| 135 | scaled ticks=false, | |
| 136 | axis lines=left, | |
| 137 | width=6.5cm, | |
| 925 | 138 | height=4.5cm, | 
| 488 | 139 |     legend entries={Our matcher},  
 | 
| 478 | 140 | legend pos=north east, | 
| 141 | legend cell align=left] | |
| 142 | %\addplot[green,mark=square*,mark options={fill=white}] table {re2.data};
 | |
| 412 | 143 | \addplot[black,mark=square*,mark options={fill=white}] table {re3.data};
 | 
| 144 | \end{axis}
 | |
| 145 | \end{tikzpicture}
 | |
| 146 | \end{tabular}
 | |
| 147 | \end{center}
 | |
| 488 | 148 | \bigskip | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 149 | |
| 412 | 150 | \noindent | 
| 488 | 151 | In what follows we will use these regular expressions and strings as | 
| 152 | running examples. There will be several versions (V1, V2, V3,\ldots) | |
| 153 | of our matcher.\footnote{The corresponding files are
 | |
| 831 | 154 |   \texttt{re1.sc}, \texttt{re2.sc} and so on. As usual, you can
 | 
| 727 | 155 | find the code on KEATS.} | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 156 | |
| 412 | 157 | Having specified in the previous lecture what | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 158 | problem our regular expression matcher is supposed to solve, | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 159 | namely for any given regular expression $r$ and string $s$ | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 160 | answer \textit{true} if and only if
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 161 | |
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 162 | \[ | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 163 | s \in L(r) | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 164 | \] | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 165 | |
| 488 | 166 | \noindent we can look for an algorithm to solve this problem. Clearly | 
| 412 | 167 | we cannot use the function $L$ directly for this, because in general | 
| 168 | the set of strings $L$ returns is infinite (recall what $L(a^*)$ is). | |
| 169 | In such cases there is no way we can implement an exhaustive test for | |
| 170 | whether a string is member of this set or not. In contrast our | |
| 171 | matching algorithm will operate on the regular expression $r$ and | |
| 414 | 172 | string $s$, only, which are both finite objects. Before we explain | 
| 646 | 173 | the matching algorithm, let us have a closer look at what it | 
| 412 | 174 | means when two regular expressions are equivalent. | 
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 175 | |
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 176 | \subsection*{Regular Expression Equivalences}
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 177 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 178 | We already defined in Handout 1 what it means for two regular | 
| 727 | 179 | expressions to be equivalent, namely whether their | 
| 180 | \emph{meaning} is the same language:
 | |
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 181 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 182 | \[ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 183 | r_1 \equiv r_2 \;\dn\; L(r_1) = L(r_2) | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 184 | \] | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 185 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 186 | \noindent | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 187 | It is relatively easy to verify that some concrete equivalences | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 188 | hold, for example | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 189 | |
| 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 190 | \begin{center}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 191 | \begin{tabular}{rcl}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 192 | $(a + b) + c$ & $\equiv$ & $a + (b + c)$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 193 | $a + a$ & $\equiv$ & $a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 194 | $a + b$ & $\equiv$ & $b + a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 195 | $(a \cdot b) \cdot c$ & $\equiv$ & $a \cdot (b \cdot c)$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 196 | $c \cdot (a + b)$ & $\equiv$ & $(c \cdot a) + (c \cdot b)$\\ | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 197 | \end{tabular}
 | 
| 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 198 | \end{center}
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 199 | |
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 200 | \noindent | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 201 | but also easy to verify that the following regular expressions | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 202 | are \emph{not} equivalent
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 203 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 204 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 205 | \begin{tabular}{rcl}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 206 | $a \cdot a$ & $\not\equiv$ & $a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 207 | $a + (b \cdot c)$ & $\not\equiv$ & $(a + b) \cdot (a + c)$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 208 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 209 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 210 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 211 | \noindent I leave it to you to verify these equivalences and | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 212 | non-equivalences. It is also interesting to look at some | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 213 | corner cases involving $\ONE$ and $\ZERO$: | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 214 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 215 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 216 | \begin{tabular}{rcl}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 217 | $a \cdot \ZERO$ & $\not\equiv$ & $a$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 218 | $a + \ONE$ & $\not\equiv$ & $a$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 219 | $\ONE$ & $\equiv$ & $\ZERO^*$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 220 | $\ONE^*$ & $\equiv$ & $\ONE$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 221 | $\ZERO^*$ & $\not\equiv$ & $\ZERO$\\ | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 222 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 223 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 224 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 225 | \noindent Again I leave it to you to make sure you agree | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 226 | with these equivalences and non-equivalences. | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 227 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 228 | |
| 318 
7975e4f0d4de
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
296diff
changeset | 229 | For our matching algorithm however the following seven | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 230 | equivalences will play an important role: | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 231 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 232 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 233 | \begin{tabular}{rcl}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 234 | $r + \ZERO$ & $\equiv$ & $r$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 235 | $\ZERO + r$ & $\equiv$ & $r$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 236 | $r \cdot \ONE$ & $\equiv$ & $r$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 237 | $\ONE \cdot r$ & $\equiv$ & $r$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 238 | $r \cdot \ZERO$ & $\equiv$ & $\ZERO$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 239 | $\ZERO \cdot r$ & $\equiv$ & $\ZERO$\\ | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 240 | $r + r$ & $\equiv$ & $r$ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 241 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 242 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 243 | |
| 727 | 244 | \noindent They always hold no matter what the regular expression $r$ | 
| 412 | 245 | looks like. The first two are easy to verify since $L(\ZERO)$ is the | 
| 246 | empty set. The next two are also easy to verify since $L(\ONE) = | |
| 247 | \{[]\}$ and appending the empty string to every string of another set,
 | |
| 248 | leaves the set unchanged. Be careful to fully comprehend the fifth and | |
| 249 | sixth equivalence: if you concatenate two sets of strings and one is | |
| 250 | the empty set, then the concatenation will also be the empty set. To | |
| 251 | see this, check the definition of $\_ @ \_$ for sets. The last | |
| 252 | equivalence is again trivial. | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 253 | |
| 727 | 254 | What will be critical later on is that we can orient these | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 255 | equivalences and read them from left to right. In this way we | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 256 | can view them as \emph{simplification rules}. Consider for 
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 257 | example the regular expression | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 258 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 259 | \begin{equation}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 260 | (r_1 + \ZERO) \cdot \ONE + ((\ONE + r_2) + r_3) \cdot (r_4 \cdot \ZERO) | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 261 | \label{big}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 262 | \end{equation}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 263 | |
| 412 | 264 | \noindent If we can find an equivalent regular expression that is | 
| 488 | 265 | simpler (that usually means smaller), then this might potentially make | 
| 727 | 266 | our matching algorithm run faster. We can look for such a simpler, but | 
| 267 | equivalent, regular expression $r'$ because whether a string $s$ is in | |
| 925 | 268 | $L(r)$ or in $L(r')$ does not matter as long as $r\equiv r'$. Yes? \footnote{You have checked this for yourself? Your friendly lecturer might talk rubbish\ldots{}one never knows.}
 | 
| 488 | 269 | |
| 727 | 270 | In the example above you will see that the regular expression in | 
| 271 | \eqref{big} is equivalent to just $r_1$. You can verify this by
 | |
| 272 | iteratively applying the simplification rules from above: | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 273 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 274 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 275 | \begin{tabular}{ll}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 276 | & $(r_1 + \ZERO) \cdot \ONE + ((\ONE + r_2) + r_3) \cdot | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 277 | (\underline{r_4 \cdot \ZERO})$\smallskip\\
 | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 278 | $\equiv$ & $(r_1 + \ZERO) \cdot \ONE + \underline{((\ONE + r_2) + r_3) \cdot 
 | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 279 | \ZERO}$\smallskip\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 280 | $\equiv$ & $\underline{(r_1 + \ZERO) \cdot \ONE} + \ZERO$\smallskip\\
 | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 281 | $\equiv$ & $(\underline{r_1 + \ZERO}) + \ZERO$\smallskip\\
 | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 282 | $\equiv$ & $\underline{r_1 + \ZERO}$\smallskip\\
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 283 | $\equiv$ & $r_1$\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 284 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 285 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 286 | |
| 296 
796b9b81ac8d
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
291diff
changeset | 287 | \noindent In each step, I underlined where a simplification | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 288 | rule is applied. Our matching algorithm in the next section | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 289 | will often generate such ``useless'' $\ONE$s and | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 290 | $\ZERO$s, therefore simplifying them away will make the | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 291 | algorithm quite a bit faster. | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 292 | |
| 488 | 293 | Finally here are three equivalences between regular expressions which are | 
| 479 | 294 | not so obvious: | 
| 295 | ||
| 296 | \begin{center}
 | |
| 297 | \begin{tabular}{rcl}
 | |
| 727 | 298 | $r^*$ & $\equiv$ & $\ONE + r\cdot r^*$\\ | 
| 479 | 299 | $(r_1 + r_2)^*$ & $\equiv$ & $r_1^* \cdot (r_2\cdot r_1^*)^*$\\ | 
| 727 | 300 | $(r_1 \cdot r_2)^*$ & $\equiv$ & $\ONE + r_1\cdot (r_2 \cdot r_1)^* \cdot r_2$\\ | 
| 479 | 301 | \end{tabular}
 | 
| 302 | \end{center}
 | |
| 303 | ||
| 304 | \noindent | |
| 727 | 305 | We will not use them in our algorithm, but feel free to convince | 
| 306 | yourself that they actually hold. As an aside, there has been a lot of | |
| 925 | 307 | research on questions like: Can one always decide whether two regular | 
| 727 | 308 | expressions are equivalent or not? What does an algorithm look like to | 
| 831 | 309 | decide this efficiently? Surprisingly, many of such questions | 
| 310 | turn out to be non-trivial problems. | |
| 311 | ||
| 479 | 312 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 313 | \subsection*{The Matching Algorithm}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 314 | |
| 925 | 315 | The regular expression matching algorithm we will introduce below | 
| 316 | consists of two parts: One is the function $\textit{nullable}$ which
 | |
| 317 | takes a regular expression as an argument and decides whether it can | |
| 318 | match the empty string (this means it returns a boolean in | |
| 319 | Scala). This can be easily defined recursively as follows: | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 320 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 321 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 322 | \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
 | 
| 412 | 323 | $\textit{nullable}(\ZERO)$      & $\dn$ & $\textit{false}$\\
 | 
| 324 | $\textit{nullable}(\ONE)$         & $\dn$ & $\textit{true}$\\
 | |
| 325 | $\textit{nullable}(c)$                & $\dn$ & $\textit{false}$\\
 | |
| 326 | $\textit{nullable}(r_1 + r_2)$     & $\dn$ &  $\textit{nullable}(r_1) \vee \textit{nullable}(r_2)$\\ 
 | |
| 327 | $\textit{nullable}(r_1 \cdot r_2)$ & $\dn$ &  $\textit{nullable}(r_1) \wedge \textit{nullable}(r_2)$\\
 | |
| 328 | $\textit{nullable}(r^*)$              & $\dn$ & $\textit{true}$ \\
 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 329 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 330 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 331 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 332 | \noindent The idea behind this function is that the following | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 333 | property holds: | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 334 | |
| 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 335 | \[ | 
| 412 | 336 | \textit{nullable}(r) \;\;\text{if and only if}\;\; []\in L(r)
 | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 337 | \] | 
| 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 338 | |
| 727 | 339 | \noindent Note on the left-hand side of the if-and-only-if we have a | 
| 874 | 340 | function we can implement, for example in Scala; on the right we have | 
| 727 | 341 | its specification (which we cannot implement in a programming language). | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 342 | |
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 343 | The other function of our matching algorithm calculates a | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 344 | \emph{derivative} of a regular expression. This is a function
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 345 | which will take a regular expression, say $r$, and a | 
| 412 | 346 | character, say $c$, as arguments and returns a new regular | 
| 488 | 347 | expression. Be mindful that the intuition behind this function | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 348 | is not so easy to grasp on first reading. Essentially this | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 349 | function solves the following problem: if $r$ can match a | 
| 488 | 350 | string of the form $c\!::\!s$, what does a regular | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 351 | expression look like that can match just $s$? The definition | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 352 | of this function is as follows: | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 353 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 354 | \begin{center}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 355 | \begin{tabular}{l@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
 | 
| 414 | 356 |   $\textit{der}\, c\, (\ZERO)$      & $\dn$ & $\ZERO$\\
 | 
| 357 |   $\textit{der}\, c\, (\ONE)$         & $\dn$ & $\ZERO$ \\
 | |
| 358 |   $\textit{der}\, c\, (d)$                & $\dn$ & if $c = d$ then $\ONE$ else $\ZERO$\\
 | |
| 359 |   $\textit{der}\, c\, (r_1 + r_2)$        & $\dn$ & $\textit{der}\, c\, r_1 + \textit{der}\, c\, r_2$\\
 | |
| 360 |   $\textit{der}\, c\, (r_1 \cdot r_2)$  & $\dn$  & if $\textit{nullable} (r_1)$\\
 | |
| 361 |   & & then $(\textit{der}\,c\,r_1) \cdot r_2 + \textit{der}\, c\, r_2$\\ 
 | |
| 362 |   & & else $(\textit{der}\, c\, r_1) \cdot r_2$\\
 | |
| 363 |   $\textit{der}\, c\, (r^*)$          & $\dn$ & $(\textit{der}\,c\,r) \cdot (r^*)$
 | |
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 364 |   \end{tabular}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 365 | \end{center}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 366 | |
| 727 | 367 | \noindent The first two clauses can be rationalised as follows: recall | 
| 368 | that $\textit{der}$ should calculate a regular expression so that
 | |
| 925 | 369 | provided the ``input'' regular expression can match a string of the | 
| 727 | 370 | form $c\!::\!s$, we want a regular expression for $s$. Since neither | 
| 925 | 371 | $\ZERO$ nor $\ONE$ can match a string of the form $c\!::\!s$, we | 
| 372 | return $\ZERO$. In the third case we have to make a case-distinction: | |
| 373 | In case the regular expression is $c$, then clearly it can recognise a | |
| 374 | string of the form $c\!::\!s$, just that $s$ is the empty | |
| 375 | string. Therefore we return the $\ONE$-regular expression in this | |
| 376 | case, as it can match the empty string. In the other case we again | |
| 377 | return $\ZERO$ since no string of the $c\!::\!s$ can be matched. Next | |
| 378 | come the recursive cases, which are a bit more involved. Fortunately, | |
| 379 | the $+$-case is still relatively straightforward: all strings of the | |
| 380 | form $c\!::\!s$ are either matched by the regular expression $r_1$ or | |
| 381 | $r_2$. So we just have to recursively call $\textit{der}$ with these
 | |
| 382 | two regular expressions and compose the results again with $+$. Makes | |
| 383 | sense? | |
| 727 | 384 | |
| 412 | 385 | |
| 386 | The $\cdot$-case is more complicated: if $r_1\cdot r_2$ | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 387 | matches a string of the form $c\!::\!s$, then the first part | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 388 | must be matched by $r_1$. Consequently, it makes sense to | 
| 414 | 389 | construct the regular expression for $s$ by calling $\textit{der}$ with
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 390 | $r_1$ and ``appending'' $r_2$. There is however one exception | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 391 | to this simple rule: if $r_1$ can match the empty string, then | 
| 960 | 392 | all of $c\!::\!s$ is matched by $r_2$. Therefore in case $r_1$ is | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 393 | nullable (that is can match the empty string) we have to allow | 
| 414 | 394 | the choice $\textit{der}\,c\,r_2$ for calculating the regular
 | 
| 960 | 395 | expression that can match $s$. This means we have to add the | 
| 414 | 396 | regular expression $\textit{der}\,c\,r_2$ in the result. The $*$-case
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 397 | is again simple: if $r^*$ matches a string of the form | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 398 | $c\!::\!s$, then the first part must be ``matched'' by a | 
| 414 | 399 | single copy of $r$. Therefore we call recursively $\textit{der}\,c\,r$
 | 
| 400 | and ``append'' $r^*$ in order to match the rest of $s$. Still | |
| 401 | makes sense? | |
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 402 | |
| 488 | 403 | If all this did not make sense yet, here is another way to explain the | 
| 404 | definition of $\textit{der}$ by considering the following operation on
 | |
| 405 | sets: | |
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 406 | |
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 407 | \begin{equation}\label{Der}
 | 
| 414 | 408 | \textit{Der}\,c\,A\;\dn\;\{s\,|\,c\!::\!s \in A\}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 409 | \end{equation}
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 410 | |
| 291 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 411 | \noindent This operation essentially transforms a set of | 
| 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 412 | strings $A$ by filtering out all strings that do not start | 
| 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 413 | with $c$ and then strips off the $c$ from all the remaining | 
| 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 414 | strings. For example suppose $A = \{f\!oo, bar, f\!rak\}$ then
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 415 | |
| 414 | 416 | \[ \textit{Der}\,f\,A = \{oo, rak\}\quad,\quad 
 | 
| 417 |    \textit{Der}\,b\,A = \{ar\} \quad \text{and} \quad 
 | |
| 418 |    \textit{Der}\,a\,A = \{\} 
 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 419 | \] | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 420 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 421 | \noindent | 
| 414 | 422 | Note that in the last case $\textit{Der}$ is empty, because no string in $A$
 | 
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 423 | starts with $a$. With this operation we can state the following | 
| 414 | 424 | property about $\textit{der}$:
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 425 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 426 | \[ | 
| 414 | 427 | L(\textit{der}\,c\,r) = \textit{Der}\,c\,(L(r))
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 428 | \] | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 429 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 430 | \noindent | 
| 414 | 431 | This property clarifies what regular expression $\textit{der}$ calculates,
 | 
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 432 | namely take the set of strings that $r$ can match (that is $L(r)$), | 
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 433 | filter out all strings not starting with $c$ and strip off the $c$ | 
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 434 | from the remaining strings---this is exactly the language that | 
| 414 | 435 | $\textit{der}\,c\,r$ can match.
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 436 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 437 | If we want to find out whether the string $abc$ is matched by | 
| 414 | 438 | the regular expression $r_1$ then we can iteratively apply $\textit{der}$
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 439 | as follows | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 440 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 441 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 442 | \begin{tabular}{rll}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 443 | Input: $r_1$, $abc$\medskip\\ | 
| 414 | 444 | Step 1: & build derivative of $a$ and $r_1$ & $(r_2 = \textit{der}\,a\,r_1)$\smallskip\\
 | 
| 445 | Step 2: & build derivative of $b$ and $r_2$ & $(r_3 = \textit{der}\,b\,r_2)$\smallskip\\
 | |
| 433 
c08290ee4f1f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
416diff
changeset | 446 | Step 3: & build derivative of $c$ and $r_3$ & $(r_4 = \textit{der}\,c\,r_3)$\smallskip\\
 | 
| 
c08290ee4f1f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
416diff
changeset | 447 | Step 4: & the string is exhausted: & $(\textit{nullable}(r_4))$\\
 | 
| 
c08290ee4f1f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
416diff
changeset | 448 | & test whether $r_4$ can recognise the\\ | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 449 | & empty string\smallskip\\ | 
| 412 | 450 | Output: & result of this test $\Rightarrow \textit{true} \,\text{or}\, \textit{false}$\\        
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 451 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 452 | \end{center}
 | 
| 140 
1be892087df2
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
133diff
changeset | 453 | |
| 414 | 454 | \noindent Again the operation $\textit{Der}$ might help to rationalise
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 455 | this algorithm. We want to know whether $abc \in L(r_1)$. We | 
| 414 | 456 | do not know yet---but let us assume it is. Then $\textit{Der}\,a\,L(r_1)$
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 457 | builds the set where all the strings not starting with $a$ are | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 458 | filtered out. Of the remaining strings, the $a$ is stripped | 
| 412 | 459 | off. So we should still have $bc$ in the set. | 
| 460 | Then we continue with filtering out all strings not | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 461 | starting with $b$ and stripping off the $b$ from the remaining | 
| 414 | 462 | strings, that means we build $\textit{Der}\,b\,(\textit{Der}\,a\,(L(r_1)))$.
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 463 | Finally we filter out all strings not starting with $c$ and | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 464 | strip off $c$ from the remaining string. This is | 
| 414 | 465 | $\textit{Der}\,c\,(\textit{Der}\,b\,(\textit{Der}\,a\,(L(r_1))))$. Now if $abc$ was in the 
 | 
| 466 | original set ($L(r_1)$), then $\textit{Der}\,c\,(\textit{Der}\,b\,(\textit{Der}\,a\,(L(r_1))))$ 
 | |
| 412 | 467 | must contain the empty string. If not, then $abc$ was not in the | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 468 | language we started with. | 
| 140 
1be892087df2
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
133diff
changeset | 469 | |
| 414 | 470 | Our matching algorithm using $\textit{der}$ and $\textit{nullable}$ works
 | 
| 571 | 471 | similarly, just using regular expressions instead of sets. In order to | 
| 414 | 472 | define our algorithm we need to extend the notion of derivatives from single | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 473 | characters to strings. This can be done using the following | 
| 414 | 474 | function, taking a string and a regular expression as input and | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 475 | a regular expression as output. | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 476 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 477 | \begin{center}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 478 | \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 479 |   $\textit{ders}\, []\, r$     & $\dn$ & $r$ & \\
 | 
| 414 | 480 |   $\textit{ders}\, (c\!::\!s)\, r$ & $\dn$ & $\textit{ders}\,s\,(\textit{der}\,c\,r)$ & \\
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 481 |   \end{tabular}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 482 | \end{center}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 483 | |
| 414 | 484 | \noindent This function iterates $\textit{der}$ taking one character at
 | 
| 488 | 485 | the time from the original string until the string is exhausted. | 
| 414 | 486 | Having $\textit{der}s$ in place, we can finally define our matching
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 487 | algorithm: | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 488 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 489 | \[ | 
| 764 | 490 | \textit{matcher}\,r\,s \dn \textit{nullable}(\textit{ders}\,s\,r)
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 491 | \] | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 492 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 493 | \noindent | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 494 | and we can claim that | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 495 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 496 | \[ | 
| 764 | 497 | \textit{matcher}\,r\,s\quad\text{if and only if}\quad s\in L(r)
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 498 | \] | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 499 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 500 | \noindent holds, which means our algorithm satisfies the | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 501 | specification. Of course we can claim many things\ldots | 
| 831 | 502 | whether the claim holds any water is a different question. | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 503 | |
| 566 | 504 | This algorithm was introduced by Janusz Brzozowski in 1964, but | 
| 414 | 505 | is more widely known only in the last 10 or so years. Its | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 506 | main attractions are simplicity and being fast, as well as | 
| 566 | 507 | being easily extendible for other regular expressions such as | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 508 | $r^{\{n\}}$, $r^?$, $\sim{}r$ and so on (this is subject of
 | 
| 831 | 509 | Coursework 1). | 
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 510 | |
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 511 | \subsection*{The Matching Algorithm in Scala}
 | 
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 512 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 513 | Another attraction of the algorithm is that it can be easily | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 514 | implemented in a functional programming language, like Scala. | 
| 296 
796b9b81ac8d
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
291diff
changeset | 515 | Given the implementation of regular expressions in Scala shown | 
| 
796b9b81ac8d
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
291diff
changeset | 516 | in the first lecture and handout, the functions and subfunctions | 
| 764 | 517 | for \pcode{matcher} are shown in Figure~\ref{scala1}.
 | 
| 126 
7c7185cb4f2b
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
125diff
changeset | 518 | |
| 
7c7185cb4f2b
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
125diff
changeset | 519 | \begin{figure}[p]
 | 
| 477 | 520 | \lstinputlisting[numbers=left,linebackgroundcolor= | 
| 521 |                   {\ifodd\value{lstnumber}\color{capri!3}\fi}]
 | |
| 522 |                   {../progs/app5.scala}
 | |
| 874 | 523 | \caption{A Scala implementation of the \textit{nullable} and 
 | 
| 524 | the derivative function. These functions are easy to | |
| 512 | 525 | implement in functional programming languages. This is because pattern | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 526 | matching and recursion allow us to mimic the mathematical | 
| 488 | 527 | definitions very closely. Nearly all functional | 
| 528 | programming languages support pattern matching and | |
| 529 |   recursion out of the box.\label{scala1}}
 | |
| 126 
7c7185cb4f2b
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
125diff
changeset | 530 | \end{figure}
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 531 | |
| 414 | 532 | |
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 533 | %Remember our second example involving the regular expression | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 534 | %$(a^*)^* \cdot b$ which could not match strings of $n$ \texttt{a}s. 
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 535 | %Java needed around 30 seconds to find this out a string with $n=28$. | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 536 | %It seems our algorithm is doing rather well in comparison: | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 537 | % | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 538 | %\begin{center}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 539 | %\begin{tikzpicture}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 540 | %\begin{axis}[
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 541 | %    title={Graph: $(a^*)^* \cdot b$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 542 | %    xlabel={$n$},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 543 | %    x label style={at={(1.05,0.0)}},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 544 | %    ylabel={time in secs},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 545 | % enlargelimits=false, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 546 | %    xtick={0,1000,...,6500},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 547 | % xmax=6800, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 548 | %    ytick={0,5,...,30},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 549 | % ymax=34, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 550 | % scaled ticks=false, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 551 | % axis lines=left, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 552 | % width=8cm, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 553 | % height=4.5cm, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 554 | %    legend entries={Java,Scala V1},  
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 555 | % legend pos=north east, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 556 | % legend cell align=left] | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 557 | %\addplot[cyan,mark=*, mark options={fill=white}] table {re-java.data};
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 558 | %\addplot[red,mark=triangle*,mark options={fill=white}] table {re1a.data};
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 559 | %\end{axis}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 560 | %\end{tikzpicture}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 561 | %\end{center}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 562 | % | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 563 | %\noindent | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 564 | %This is not an error: it hardly takes more than half a second for | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 565 | %strings up to the length of 6500. After that we receive a | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 566 | %StackOverflow exception, but still\ldots | 
| 414 | 567 | |
| 568 | For running the algorithm with our first example, the evil | |
| 566 | 569 | regular expression $a^?{}^{\{n\}}\cdot a^{\{n\}}$, we need to implement
 | 
| 488 | 570 | the optional regular expression and the `exactly $n$-times | 
| 571 | regular expression'. This can be done with the translations | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 572 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 573 | \lstinputlisting[numbers=none]{../progs/app51.scala}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 574 | |
| 414 | 575 | \noindent Running the matcher with this example, we find it is | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 576 | slightly worse then the matcher in Ruby and Python. | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 577 | Ooops\ldots | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 578 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 579 | \begin{center}
 | 
| 414 | 580 | \begin{tikzpicture}
 | 
| 581 | \begin{axis}[    
 | |
| 415 | 582 |     title={Graph: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 414 | 583 |     xlabel={$n$},
 | 
| 584 |     x label style={at={(1.05,0.0)}},
 | |
| 585 |     ylabel={time in secs},
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 586 | enlargelimits=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 587 |     xtick={0,5,...,30},
 | 
| 415 | 588 | xmax=32, | 
| 414 | 589 |     ytick={0,5,...,30},
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 590 | scaled ticks=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 591 | axis lines=left, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 592 | width=6cm, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 593 | height=5cm, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 594 |     legend entries={Python,Ruby,Scala V1},  
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 595 | legend pos=outer north east, | 
| 415 | 596 | legend cell align=left] | 
| 434 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 597 | \addplot[blue,mark=*, mark options={fill=white}] table {re-python.data};
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 598 | \addplot[brown,mark=pentagon*, mark options={fill=white}] table {re-ruby.data};  
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 599 | \addplot[red,mark=triangle*,mark options={fill=white}] table {re1.data};  
 | 
| 414 | 600 | \end{axis}
 | 
| 601 | \end{tikzpicture}
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 602 | \end{center}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 603 | |
| 488 | 604 | \noindent Analysing this failure we notice that for $a^{\{n\}}$, for
 | 
| 605 | example, we generate quite big regular expressions: | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 606 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 607 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 608 | \begin{tabular}{rl}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 609 | 1: & $a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 610 | 2: & $a\cdot a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 611 | 3: & $a\cdot a\cdot a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 612 | & \ldots\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 613 | 13: & $a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a$\\ | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 614 | & \ldots | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 615 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 616 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 617 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 618 | \noindent Our algorithm traverses such regular expressions at | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 619 | least once every time a derivative is calculated. So having | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 620 | large regular expressions will cause problems. This problem | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 621 | is aggravated by $a^?$ being represented as $a + \ONE$. | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 622 | |
| 488 | 623 | We can however fix this easily by having an explicit constructor for | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 624 | $r^{\{n\}}$. In Scala we would introduce a constructor like
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 625 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 626 | \begin{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 627 | \code{case class NTIMES(r: Rexp, n: Int) extends Rexp}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 628 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 629 | |
| 478 | 630 | \noindent With this fix we have a constant ``size'' regular expression | 
| 631 | for our running example no matter how large $n$ is (see the | |
| 632 | \texttt{size} section in the implementations).  This means we have to
 | |
| 633 | also add cases for \pcode{NTIMES} in the functions $\textit{nullable}$
 | |
| 634 | and $\textit{der}$. Does the change have any effect?
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 635 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 636 | \begin{center}
 | 
| 414 | 637 | \begin{tikzpicture}
 | 
| 638 | \begin{axis}[
 | |
| 415 | 639 |     title={Graph: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 414 | 640 |     xlabel={$n$},
 | 
| 641 |     x label style={at={(1.01,0.0)}},
 | |
| 642 |     ylabel={time in secs},
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 643 | enlargelimits=false, | 
| 477 | 644 |     xtick={0,200,...,1100},
 | 
| 645 | xmax=1200, | |
| 414 | 646 |     ytick={0,5,...,30},
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 647 | scaled ticks=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 648 | axis lines=left, | 
| 414 | 649 | width=10cm, | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 650 | height=5cm, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 651 |     legend entries={Python,Ruby,Scala V1,Scala V2},  
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 652 | legend pos=outer north east, | 
| 414 | 653 | legend cell align=left] | 
| 434 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 654 | \addplot[blue,mark=*, mark options={fill=white}] table {re-python.data};
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 655 | \addplot[brown,mark=pentagon*, mark options={fill=white}] table {re-ruby.data};  
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 656 | \addplot[red,mark=triangle*,mark options={fill=white}] table {re1.data};  
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 657 | \addplot[green,mark=square*,mark options={fill=white}] table {re2.data};
 | 
| 414 | 658 | \end{axis}
 | 
| 659 | \end{tikzpicture}
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 660 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 661 | |
| 478 | 662 | \noindent Now we are talking business! The modified matcher can within | 
| 663 | 25 seconds handle regular expressions up to $n = 1,100$ before a | |
| 664 | StackOverflow is raised. Recall that Python and Ruby (and our first | |
| 665 | version, Scala V1) could only handle $n = 27$ or so in 30 | |
| 488 | 666 | seconds. We have not tried our algorithm on the second example $(a^*)^* \cdot | 
| 511 | 667 | b$---I leave this to you. | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 668 | |
| 412 | 669 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 670 | The moral is that our algorithm is rather sensitive to the | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 671 | size of regular expressions it needs to handle. This is of | 
| 414 | 672 | course obvious because both $\textit{nullable}$ and $\textit{der}$ frequently
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 673 | need to traverse the whole regular expression. There seems, | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 674 | however, one more issue for making the algorithm run faster. | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 675 | The derivative function often produces ``useless'' | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 676 | $\ZERO$s and $\ONE$s. To see this, consider $r = ((a | 
| 478 | 677 | \cdot b) + b)^*$ and the following three derivatives | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 678 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 679 | \begin{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 680 | \begin{tabular}{l}
 | 
| 414 | 681 | $\textit{der}\,a\,r = ((\ONE \cdot b) + \ZERO) \cdot r$\\
 | 
| 682 | $\textit{der}\,b\,r = ((\ZERO \cdot b) + \ONE)\cdot r$\\
 | |
| 683 | $\textit{der}\,c\,r = ((\ZERO \cdot b) + \ZERO)\cdot r$
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 684 | \end{tabular}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 685 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 686 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 687 | \noindent | 
| 488 | 688 | If we simplify them according to the simplification rules from the | 
| 689 | beginning, we can replace the right-hand sides by the smaller | |
| 690 | equivalent regular expressions | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 691 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 692 | \begin{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 693 | \begin{tabular}{l}
 | 
| 414 | 694 | $\textit{der}\,a\,r \equiv b \cdot r$\\
 | 
| 695 | $\textit{der}\,b\,r \equiv r$\\
 | |
| 696 | $\textit{der}\,c\,r \equiv \ZERO$
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 697 | \end{tabular}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 698 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 699 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 700 | \noindent I leave it to you to contemplate whether such a | 
| 478 | 701 | simplification can have any impact on the correctness of our algorithm | 
| 702 | (will it change any answers?). Figure~\ref{scala2} gives a
 | |
| 703 | simplification function that recursively traverses a regular | |
| 704 | expression and simplifies it according to the rules given at the | |
| 571 | 705 | beginning. There are only rules for $+$ and $\cdot$. There is | 
| 706 | no simplification rule for a star, because | |
| 478 | 707 | empirical data and also a little thought showed that simplifying under | 
| 708 | a star is a waste of computation time. The simplification function | |
| 709 | will be called after every derivation. This additional step removes | |
| 710 | all the ``junk'' the derivative function introduced. Does this improve | |
| 711 | the speed? You bet!! | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 712 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 713 | \begin{figure}[p]
 | 
| 477 | 714 | \lstinputlisting[numbers=left,linebackgroundcolor= | 
| 715 |   {\ifodd\value{lstnumber}\color{capri!3}\fi}]
 | |
| 716 |                 {../progs/app6.scala}
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 717 | \caption{The simplification function and modified 
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 718 | \texttt{ders}-function; this function now
 | 
| 333 
8890852e18b7
updated coursework
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
332diff
changeset | 719 | calls \texttt{der} first, but then simplifies
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 720 | the resulting derivative regular expressions before | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 721 | building the next derivative, see | 
| 566 | 722 | Line~24.\label{scala2}}
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 723 | \end{figure}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 724 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 725 | \begin{center}
 | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 726 | \begin{tikzpicture}
 | 
| 414 | 727 | \begin{axis}[
 | 
| 415 | 728 |     title={Graph: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 414 | 729 |     xlabel={$n$},
 | 
| 730 |     x label style={at={(1.04,0.0)}},
 | |
| 731 |     ylabel={time in secs},
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 732 | enlargelimits=false, | 
| 478 | 733 |     xtick={0,2500,...,10000},
 | 
| 734 | xmax=12000, | |
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 735 |     ytick={0,5,...,30},
 | 
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 736 | ymax=32, | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 737 | scaled ticks=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 738 | axis lines=left, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 739 | width=9cm, | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 740 | height=5cm, | 
| 415 | 741 |     legend entries={Scala V2,Scala V3},
 | 
| 742 | legend pos=outer north east, | |
| 743 | legend cell align=left] | |
| 744 | \addplot[green,mark=square*,mark options={fill=white}] table {re2.data};
 | |
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 745 | \addplot[black,mark=square*,mark options={fill=white}] table {re3.data};
 | 
| 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 746 | \end{axis}
 | 
| 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 747 | \end{tikzpicture}
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 748 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 749 | |
| 415 | 750 | \noindent | 
| 510 | 751 | To recap, Python and Ruby needed approximately 30 seconds to match a | 
| 478 | 752 | string of 28 \texttt{a}s and the regular expression $a^{?\{n\}} \cdot
 | 
| 753 | a^{\{n\}}$.  We need a third of this time to do the same with strings
 | |
| 566 | 754 | up to 11,000 \texttt{a}s.  Similarly, Java 8 and Python needed 30
 | 
| 478 | 755 | seconds to find out the regular expression $(a^*)^* \cdot b$ does not | 
| 566 | 756 | match the string of 28 \texttt{a}s. In Java 9 and later this has been 
 | 
| 757 | cranked up to 39,000 \texttt{a}s, but we can do the same in the same 
 | |
| 571 | 758 | amount of time for strings composed of nearly 6,000,000 \texttt{a}s. 
 | 
| 759 | This is shown in the following plot. | |
| 415 | 760 | |
| 761 | ||
| 414 | 762 | \begin{center}
 | 
| 763 | \begin{tikzpicture}
 | |
| 764 | \begin{axis}[
 | |
| 415 | 765 |     title={Graph: $(a^*)^* \cdot b$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 414 | 766 |     xlabel={$n$},
 | 
| 767 |     ylabel={time in secs},
 | |
| 768 | enlargelimits=false, | |
| 478 | 769 | ymax=35, | 
| 414 | 770 |     ytick={0,5,...,30},
 | 
| 771 | axis lines=left, | |
| 550 | 772 | %%scaled ticks=false, | 
| 478 | 773 |     x label style={at={(1.09,0.0)}},
 | 
| 550 | 774 | %%xmax=7700000, | 
| 414 | 775 | width=9cm, | 
| 776 | height=5cm, | |
| 478 | 777 |     legend entries={Scala V3},
 | 
| 415 | 778 | legend pos=outer north east, | 
| 779 | legend cell align=left] | |
| 478 | 780 | %\addplot[green,mark=square*,mark options={fill=white}] table {re2a.data};
 | 
| 414 | 781 | \addplot[black,mark=square*,mark options={fill=white}] table {re3a.data};
 | 
| 782 | \end{axis}
 | |
| 783 | \end{tikzpicture}
 | |
| 784 | \end{center}
 | |
| 785 | ||
| 415 | 786 | \subsection*{Epilogue}
 | 
| 787 | ||
| 550 | 788 | (23/Aug/2016) I found another place where this algorithm can | 
| 488 | 789 | be sped up (this idea is not integrated with what is coming next, but | 
| 790 | I present it nonetheless). The idea is to not define \texttt{ders}
 | |
| 960 | 791 | so that it iterates the derivative character-by-character, but in bigger | 
| 488 | 792 | chunks. The resulting code for \texttt{ders2} looks as follows:
 | 
| 415 | 793 | |
| 794 | \lstinputlisting[numbers=none]{../progs/app52.scala} 
 | |
| 795 | ||
| 796 | \noindent | |
| 797 | I have not fully understood why this version is much faster, | |
| 798 | but it seems it is a combination of the clauses for \texttt{ALT}
 | |
| 799 | and \texttt{SEQ}. In the latter case we call \texttt{der} with 
 | |
| 800 | a single character and this potentially produces an alternative. | |
| 510 | 801 | The derivative of such an alternative can then be more efficiently | 
| 415 | 802 | calculated by \texttt{ders2} since it pushes a whole string
 | 
| 803 | under an \texttt{ALT}. The numbers are that in the second case  
 | |
| 804 | $(a^*)^* \cdot b$ both versions are pretty much the same, but in the | |
| 805 | first case $a^{?\{n\}} \cdot a^{\{n\}}$ the improvement gives 
 | |
| 806 | another factor of 100 speedup. Nice! | |
| 414 | 807 | |
| 415 | 808 | \begin{center}
 | 
| 809 | \begin{tabular}{cc}
 | |
| 810 | \begin{tikzpicture}
 | |
| 811 | \begin{axis}[
 | |
| 812 |     title={Graph: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$},
 | |
| 813 |     xlabel={$n$},
 | |
| 814 |     x label style={at={(1.04,0.0)}},
 | |
| 815 |     ylabel={time in secs},
 | |
| 816 | enlargelimits=false, | |
| 817 | xmax=7100000, | |
| 818 |     ytick={0,5,...,30},
 | |
| 819 | ymax=33, | |
| 820 | %scaled ticks=false, | |
| 821 | axis lines=left, | |
| 488 | 822 | width=5.3cm, | 
| 415 | 823 | height=5cm, | 
| 824 |     legend entries={Scala V3, Scala V4},
 | |
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 825 |     legend style={at={(0.1,-0.2)},anchor=north}]
 | 
| 415 | 826 | \addplot[black,mark=square*,mark options={fill=white}] table {re3.data};
 | 
| 827 | \addplot[purple,mark=square*,mark options={fill=white}] table {re4.data};
 | |
| 828 | \end{axis}
 | |
| 829 | \end{tikzpicture}
 | |
| 830 | & | |
| 831 | \begin{tikzpicture}
 | |
| 832 | \begin{axis}[
 | |
| 833 |     title={Graph: $(a^*)^* \cdot b$ and strings $\underbrace{a\ldots a}_{n}$},
 | |
| 834 |     xlabel={$n$},
 | |
| 835 |     x label style={at={(1.09,0.0)}},
 | |
| 836 |     ylabel={time in secs},
 | |
| 837 | enlargelimits=false, | |
| 488 | 838 | xmax=8200000, | 
| 415 | 839 |     ytick={0,5,...,30},
 | 
| 840 | ymax=33, | |
| 841 | %scaled ticks=false, | |
| 842 | axis lines=left, | |
| 488 | 843 | width=5.3cm, | 
| 415 | 844 | height=5cm, | 
| 845 |     legend entries={Scala V3, Scala V4},
 | |
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 846 |     legend style={at={(0.1,-0.2)},anchor=north}]
 | 
| 415 | 847 | \addplot[black,mark=square*,mark options={fill=white}] table {re3a.data};
 | 
| 848 | \addplot[purple,mark=square*,mark options={fill=white}] table {re4a.data};
 | |
| 849 | \end{axis}
 | |
| 850 | \end{tikzpicture}
 | |
| 851 | \end{tabular}
 | |
| 852 | \end{center}
 | |
| 414 | 853 | |
| 412 | 854 | |
| 334 
fd89a63e9db3
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
333diff
changeset | 855 | \section*{Proofs}
 | 
| 
fd89a63e9db3
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
333diff
changeset | 856 | |
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 857 | You might not like doing proofs. But they serve a very | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 858 | important purpose in Computer Science: How can we be sure that | 
| 488 | 859 | our algorithm matches its specification? We can try to test | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 860 | the algorithm, but that often overlooks corner cases and an | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 861 | exhaustive testing is impossible (since there are infinitely | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 862 | many inputs). Proofs allow us to ensure that an algorithm | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 863 | really meets its specification. | 
| 338 
f16120cb4e19
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
334diff
changeset | 864 | |
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 865 | For the programs we look at in this module, the proofs will | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 866 | mostly by some form of induction. Remember that regular | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 867 | expressions are defined as | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 868 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 869 | \begin{center}
 | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 870 | \begin{tabular}{r@{\hspace{1mm}}r@{\hspace{1mm}}l@{\hspace{13mm}}l}
 | 
| 512 | 871 | $r$ & $::=$ & $\ZERO$ & nothing\\ | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 872 |         & $\mid$ & $\ONE$           & empty string / \texttt{""} / []\\
 | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 873 | & $\mid$ & $c$ & single character\\ | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 874 | & $\mid$ & $r_1 + r_2$ & alternative / choice\\ | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 875 | & $\mid$ & $r_1 \cdot r_2$ & sequence\\ | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 876 | & $\mid$ & $r^*$ & star (zero or more)\\ | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 877 |   \end{tabular}
 | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 878 | \end{center}
 | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 879 | |
| 488 | 880 | \noindent If you want to show a property $P(r)$ for \emph{all} 
 | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 881 | regular expressions $r$, then you have to follow essentially | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 882 | the recipe: | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 883 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 884 | \begin{itemize}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 885 | \item $P$ has to hold for $\ZERO$, $\ONE$ and $c$ | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 886 | (these are the base cases). | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 887 | \item $P$ has to hold for $r_1 + r_2$ under the assumption | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 888 | that $P$ already holds for $r_1$ and $r_2$. | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 889 | \item $P$ has to hold for $r_1 \cdot r_2$ under the | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 890 | assumption that $P$ already holds for $r_1$ and $r_2$. | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 891 | \item $P$ has to hold for $r^*$ under the assumption | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 892 | that $P$ already holds for $r$. | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 893 | \end{itemize}
 | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 894 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 895 | \noindent | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 896 | A simple proof is for example showing the following | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 897 | property: | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 898 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 899 | \begin{equation}
 | 
| 412 | 900 | \textit{nullable}(r) \;\;\text{if and only if}\;\; []\in L(r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 901 | \label{nullableprop}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 902 | \end{equation}
 | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 903 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 904 | \noindent | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 905 | Let us say that this property is $P(r)$, then the first case | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 906 | we need to check is whether $P(\ZERO)$ (see recipe | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 907 | above). So we have to show that | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 908 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 909 | \[ | 
| 412 | 910 | \textit{nullable}(\ZERO) \;\;\text{if and only if}\;\; 
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 911 | []\in L(\ZERO) | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 912 | \] | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 913 | |
| 412 | 914 | \noindent whereby $\textit{nullable}(\ZERO)$ is by definition of
 | 
| 915 | the function $\textit{nullable}$ always $\textit{false}$. We also have
 | |
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 916 | that $L(\ZERO)$ is by definition $\{\}$. It is
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 917 | impossible that the empty string $[]$ is in the empty set. | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 918 | Therefore also the right-hand side is false. Consequently we | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 919 | verified this case: both sides are false. We would still need | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 920 | to do this for $P(\ONE)$ and $P(c)$. I leave this to | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 921 | you to verify. | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 922 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 923 | Next we need to check the inductive cases, for example | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 924 | $P(r_1 + r_2)$, which is | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 925 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 926 | \begin{equation}
 | 
| 412 | 927 | \textit{nullable}(r_1 + r_2) \;\;\text{if and only if}\;\; 
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 928 | []\in L(r_1 + r_2) | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 929 | \label{propalt}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 930 | \end{equation}
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 931 | |
| 488 | 932 | \noindent The difference to the base cases is that in the inductive | 
| 933 | cases we can already assume we proved $P$ for the components, that is | |
| 934 | we can assume. | |
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 935 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 936 | \begin{center}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 937 | \begin{tabular}{l}
 | 
| 412 | 938 | $\textit{nullable}(r_1) \;\;\text{if and only if}\;\; []\in L(r_1)$ and\\
 | 
| 939 | $\textit{nullable}(r_2) \;\;\text{if and only if}\;\; []\in L(r_2)$\\
 | |
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 940 | \end{tabular}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 941 | \end{center}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 942 | |
| 488 | 943 | \noindent These are called the induction hypotheses. To check this | 
| 412 | 944 | case, we can start from $\textit{nullable}(r_1 + r_2)$, which by 
 | 
| 488 | 945 | definition of $\textit{nullable}$ is
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 946 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 947 | \[ | 
| 412 | 948 | \textit{nullable}(r_1) \vee \textit{nullable}(r_2)
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 949 | \] | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 950 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 951 | \noindent Using the two induction hypotheses from above, | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 952 | we can transform this into | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 953 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 954 | \[ | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 955 | [] \in L(r_1) \vee []\in(r_2) | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 956 | \] | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 957 | |
| 412 | 958 | \noindent We just replaced the $\textit{nullable}(\ldots)$ parts by
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 959 | the equivalent $[] \in L(\ldots)$ from the induction | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 960 | hypotheses. A bit of thinking convinces you that if | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 961 | $[] \in L(r_1) \vee []\in L(r_2)$ then the empty string | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 962 | must be in the union $L(r_1)\cup L(r_2)$, that is | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 963 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 964 | \[ | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 965 | [] \in L(r_1)\cup L(r_2) | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 966 | \] | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 967 | |
| 488 | 968 | \noindent but this is by definition of $L$ exactly $[] \in L(r_1 + | 
| 969 | r_2)$, which we needed to establish according to statement in | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 970 | \eqref{propalt}. What we have shown is that starting from
 | 
| 412 | 971 | $\textit{nullable}(r_1 + r_2)$ we have done equivalent transformations
 | 
| 488 | 972 | to end up with $[] \in L(r_1 + r_2)$. Consequently we have established | 
| 973 | that $P(r_1 + r_2)$ holds. | |
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 974 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 975 | In order to complete the proof we would now need to look | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 976 | at the cases \mbox{$P(r_1\cdot r_2)$} and $P(r^*)$. Again I let you
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 977 | check the details. | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 978 | |
| 488 | 979 | You might also have to do induction proofs over strings. | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 980 | That means you want to establish a property $P(s)$ for all | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 981 | strings $s$. For this remember strings are lists of | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 982 | characters. These lists can be either the empty list or a | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 983 | list of the form $c::s$. If you want to perform an induction | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 984 | proof for strings you need to consider the cases | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 985 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 986 | \begin{itemize}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 987 | \item $P$ has to hold for $[]$ (this is the base case). | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 988 | \item $P$ has to hold for $c::s$ under the assumption | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 989 | that $P$ already holds for $s$. | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 990 | \end{itemize}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 991 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 992 | \noindent | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 993 | Given this recipe, I let you show | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 994 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 995 | \begin{equation}
 | 
| 414 | 996 | \textit{Ders}\,s\,(L(r)) = L(\textit{ders}\,s\,r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 997 | \label{dersprop}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 998 | \end{equation}
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 999 | |
| 414 | 1000 | \noindent by induction on $s$. Recall $\textit{Der}$ is defined for 
 | 
| 1001 | character---see \eqref{Der}; $\textit{Ders}$ is similar, but for strings:
 | |
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 1002 | |
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 1003 | \[ | 
| 414 | 1004 | \textit{Ders}\,s\,A\;\dn\;\{s'\,|\,s @ s' \in A\}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 1005 | \] | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 1006 | |
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 1007 | \noindent In this proof you can assume the following property | 
| 414 | 1008 | for $der$ and $\textit{Der}$ has already been proved, that is you can
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 1009 | assume | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 1010 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 1011 | \[ | 
| 414 | 1012 | L(\textit{der}\,c\,r) = \textit{Der}\,c\,(L(r))
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 1013 | \] | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 1014 | |
| 488 | 1015 | \noindent holds (this would be of course another property that needs | 
| 1016 | to be proved in a side-lemma by induction on $r$). This is a bit | |
| 1017 | more challenging, but not impossible. | |
| 338 
f16120cb4e19
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
334diff
changeset | 1018 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1019 | To sum up, using reasoning like the one shown above allows us | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1020 | to show the correctness of our algorithm. To see this, | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1021 | start from the specification | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1022 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1023 | \[ | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1024 | s \in L(r) | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1025 | \] | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1026 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1027 | \noindent That is the problem we want to solve. Thinking a | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1028 | little, you will see that this problem is equivalent to the | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1029 | following problem | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1030 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1031 | \begin{equation}
 | 
| 414 | 1032 | [] \in \textit{Ders}\,s\,(L(r))
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1033 | \label{dersstep}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1034 | \end{equation}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1035 | |
| 488 | 1036 | \noindent You agree?  But we have shown above in \eqref{dersprop},
 | 
| 1037 | that the $\textit{Ders}$ can be replaced by
 | |
| 1038 | $L(\textit{ders}\ldots)$. That means \eqref{dersstep} is equivalent to
 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1039 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1040 | \begin{equation}
 | 
| 414 | 1041 | [] \in L(\textit{ders}\,s\,r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1042 | \label{prefinalstep}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1043 | \end{equation}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1044 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1045 | \noindent We have also shown that testing whether the empty | 
| 412 | 1046 | string is in a language is equivalent to the $\textit{nullable}$
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1047 | function; see \eqref{nullableprop}. That means
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1048 | \eqref{prefinalstep} is equivalent with
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1049 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1050 | \[ | 
| 414 | 1051 | \textit{nullable}(\textit{ders}\,s\,r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1052 | \] | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1053 | |
| 764 | 1054 | \noindent But this is just the definition of $matcher$ | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1055 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1056 | \[ | 
| 764 | 1057 | matcher\,s\,r \dn nullable(\textit{ders}\,s\,r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1058 | \] | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1059 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1060 | \noindent In effect we have shown | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1061 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1062 | \[ | 
| 764 | 1063 | matcher\,s\,r\;\;\text{if and only if}\;\;
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1064 | s\in L(r) | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1065 | \] | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1066 | |
| 488 | 1067 | \noindent which is the property we set out to prove: our algorithm | 
| 1068 | meets its specification. To have done so, requires a few induction | |
| 925 | 1069 | proofs about strings and regular expressions. Following the | 
| 1070 | \emph{induction recipes} is already a big step in actually performing
 | |
| 1071 | these proofs. If you do not believe it, proofs have helped me to make | |
| 1072 | sure my code is correct and in several instances prevented me of | |
| 1073 | letting slip embarrassing mistakes into the `wild'. In fact I have | |
| 1074 | found a number of mistakes in the brilliant work by Sulzmann and Lu, | |
| 1075 | which we are going to have a look at in Lecture 4. But in Lecture 3 we | |
| 1076 | should first find out why on earth are existing regular expression | |
| 1077 | matchers so abysmally slow. Are the people in Python, Ruby, Swift, | |
| 1078 | JavaScript, Java and also in Rust\footnote{Interestingly the regex
 | |
| 1079 | engine in Rust says it guarantees a linear behaviour when deciding | |
| 1080 | when a regular expression matches a | |
| 1081 |   string. \here{https://youtu.be/3N_ywhx6_K0?t=31}} just idiots? For
 | |
| 1082 | example could it possibly be that what we have implemented here in | |
| 1083 | Scala is faster than the regex engine that has been implemented in | |
| 1084 | Rust? See you next week\ldots | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1085 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 1086 | \end{document}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 1087 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 1088 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 1089 | |
| 566 | 1090 | % !TeX program = latexmk -xelatex | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1091 | %%% Local Variables: | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1092 | %%% mode: latex | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1093 | %%% TeX-master: t | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1094 | %%% End: |