| author | Christian Urban <urbanc@in.tum.de> | 
| Tue, 20 Nov 2018 13:23:51 +0000 | |
| changeset 607 | d58013f17af8 | 
| parent 571 | 19b4dad8d202 | 
| child 618 | 1c7cca56fadf | 
| permissions | -rw-r--r-- | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1 | \documentclass{article}
 | 
| 251 
5b5a68df6d16
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
217diff
changeset | 2 | \usepackage{../style}
 | 
| 217 
cd6066f1056a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
140diff
changeset | 3 | \usepackage{../langs}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 4 | \usepackage{../graphics}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 5 | \usepackage{../data}
 | 
| 480 | 6 | |
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 7 | |
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 8 | \begin{document}
 | 
| 571 | 9 | \fnote{\copyright{} Christian Urban, King's College London, 2014, 2015, 2016, 2017, 2018}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 10 | |
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 11 | |
| 272 
1446bc47a294
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
268diff
changeset | 12 | \section*{Handout 2 (Regular Expression Matching)}
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 13 | |
| 412 | 14 | This lecture is about implementing a more efficient regular expression | 
| 478 | 15 | matcher (the plots on the right below)---more efficient than the | 
| 16 | matchers from regular expression libraries in Ruby, Python and Java | |
| 492 | 17 | (the plots on the left). The first pair of plots shows the running time | 
| 478 | 18 | for the regular expression $(a^*)^*\cdot b$ and strings composed of | 
| 19 | $n$ \pcode{a}s (meaning this regular expression actually does not
 | |
| 492 | 20 | match the strings). The second pair of plots shows the running time for | 
| 478 | 21 | the regular expressions $a^?{}^{\{n\}}\cdot a^{\{n\}}$ and strings
 | 
| 22 | also composed of $n$ \pcode{a}s (this time the regular expressions
 | |
| 412 | 23 | match the strings). To see the substantial differences in the left | 
| 478 | 24 | and right plots below, note the different scales of the $x$-axes. | 
| 25 | ||
| 510 | 26 | |
| 478 | 27 | \begin{center}
 | 
| 28 | Graphs: $(a^*)^* \cdot b$ and strings $\underbrace{a\ldots a}_{n}$
 | |
| 29 | \begin{tabular}{@{}cc@{}}
 | |
| 550 | 30 | \begin{tikzpicture}[baseline=(current bounding box.north)]
 | 
| 31 |   \begin{axis}[
 | |
| 478 | 32 |     xlabel={$n$},
 | 
| 33 |     x label style={at={(1.05,0.0)}},
 | |
| 34 |     ylabel={time in secs},
 | |
| 35 | enlargelimits=false, | |
| 36 |     xtick={0,5,...,30},
 | |
| 37 | xmax=33, | |
| 38 | ymax=35, | |
| 39 |     ytick={0,5,...,30},
 | |
| 40 | scaled ticks=false, | |
| 41 | axis lines=left, | |
| 42 | width=5cm, | |
| 43 | height=5cm, | |
| 550 | 44 |     legend entries={Java 8, Python},  
 | 
| 478 | 45 | legend pos=north west, | 
| 46 | legend cell align=left] | |
| 47 | \addplot[blue,mark=*, mark options={fill=white}] table {re-python2.data};
 | |
| 48 | \addplot[cyan,mark=*, mark options={fill=white}] table {re-java.data};
 | |
| 49 | \end{axis}
 | |
| 50 | \end{tikzpicture}
 | |
| 51 | & | |
| 550 | 52 | \begin{tikzpicture}[baseline=(current bounding box.north)]
 | 
| 478 | 53 |   \begin{axis}[
 | 
| 54 |     xlabel={$n$},
 | |
| 488 | 55 |     x label style={at={(1.1,0.0)}},
 | 
| 56 |     %%xtick={0,1000000,...,5000000}, 
 | |
| 478 | 57 |     ylabel={time in secs},
 | 
| 58 | enlargelimits=false, | |
| 59 | ymax=35, | |
| 60 |     ytick={0,5,...,30},
 | |
| 61 | axis lines=left, | |
| 488 | 62 | %scaled ticks=false, | 
| 478 | 63 | width=6.5cm, | 
| 64 | height=5cm, | |
| 488 | 65 |     legend entries={Our matcher},  
 | 
| 478 | 66 | legend pos=north east, | 
| 67 | legend cell align=left] | |
| 68 | %\addplot[green,mark=square*,mark options={fill=white}] table {re2a.data};    
 | |
| 69 | \addplot[black,mark=square*,mark options={fill=white}] table {re3a.data};
 | |
| 70 | \end{axis}
 | |
| 71 | \end{tikzpicture}
 | |
| 72 | \end{tabular}
 | |
| 488 | 73 | \end{center}\bigskip
 | 
| 263 
92e6985018ae
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
262diff
changeset | 74 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 75 | \begin{center}
 | 
| 415 | 76 | Graphs: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$\\
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 77 | \begin{tabular}{@{}cc@{}}
 | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 78 | \begin{tikzpicture}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 79 | \begin{axis}[
 | 
| 414 | 80 |     xlabel={$n$},
 | 
| 81 |     x label style={at={(1.05,0.0)}},
 | |
| 412 | 82 |     ylabel={\small time in secs},
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 83 | enlargelimits=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 84 |     xtick={0,5,...,30},
 | 
| 291 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 85 | xmax=33, | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 86 | ymax=35, | 
| 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 87 |     ytick={0,5,...,30},
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 88 | scaled ticks=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 89 | axis lines=left, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 90 | width=5cm, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 91 | height=5cm, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 92 |     legend entries={Python,Ruby},  
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 93 | legend pos=north west, | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 94 | legend cell align=left] | 
| 434 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 95 | \addplot[blue,mark=*, mark options={fill=white}] table {re-python.data};
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 96 | \addplot[brown,mark=triangle*, mark options={fill=white}] table {re-ruby.data};  
 | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 97 | \end{axis}
 | 
| 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 98 | \end{tikzpicture}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 99 | & | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 100 | \begin{tikzpicture}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 101 |   \begin{axis}[
 | 
| 414 | 102 |     xlabel={$n$},
 | 
| 103 |     x label style={at={(1.1,0.05)}},
 | |
| 412 | 104 |     ylabel={\small time in secs},
 | 
| 105 | enlargelimits=false, | |
| 477 | 106 |     xtick={0,2500,...,11000},
 | 
| 107 | xmax=12000, | |
| 412 | 108 | ymax=35, | 
| 109 |     ytick={0,5,...,30},
 | |
| 110 | scaled ticks=false, | |
| 111 | axis lines=left, | |
| 112 | width=6.5cm, | |
| 478 | 113 | height=5cm, | 
| 488 | 114 |     legend entries={Our matcher},  
 | 
| 478 | 115 | legend pos=north east, | 
| 116 | legend cell align=left] | |
| 117 | %\addplot[green,mark=square*,mark options={fill=white}] table {re2.data};
 | |
| 412 | 118 | \addplot[black,mark=square*,mark options={fill=white}] table {re3.data};
 | 
| 119 | \end{axis}
 | |
| 120 | \end{tikzpicture}
 | |
| 121 | \end{tabular}
 | |
| 122 | \end{center}
 | |
| 488 | 123 | \bigskip | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 124 | |
| 412 | 125 | \noindent | 
| 488 | 126 | In what follows we will use these regular expressions and strings as | 
| 127 | running examples. There will be several versions (V1, V2, V3,\ldots) | |
| 128 | of our matcher.\footnote{The corresponding files are
 | |
| 129 |   \texttt{re1.scala}, \texttt{re2.scala} and so on. As usual, you can
 | |
| 130 | find the code on KEATS.}\bigskip | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 131 | |
| 478 | 132 | \noindent | 
| 412 | 133 | Having specified in the previous lecture what | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 134 | problem our regular expression matcher is supposed to solve, | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 135 | namely for any given regular expression $r$ and string $s$ | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 136 | answer \textit{true} if and only if
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 137 | |
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 138 | \[ | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 139 | s \in L(r) | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 140 | \] | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 141 | |
| 488 | 142 | \noindent we can look for an algorithm to solve this problem. Clearly | 
| 412 | 143 | we cannot use the function $L$ directly for this, because in general | 
| 144 | the set of strings $L$ returns is infinite (recall what $L(a^*)$ is). | |
| 145 | In such cases there is no way we can implement an exhaustive test for | |
| 146 | whether a string is member of this set or not. In contrast our | |
| 147 | matching algorithm will operate on the regular expression $r$ and | |
| 414 | 148 | string $s$, only, which are both finite objects. Before we explain | 
| 412 | 149 | the matching algorithm, however, let us have a closer look at what it | 
| 150 | means when two regular expressions are equivalent. | |
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 151 | |
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 152 | \subsection*{Regular Expression Equivalences}
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 153 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 154 | We already defined in Handout 1 what it means for two regular | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 155 | expressions to be equivalent, namely if their meaning is the | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 156 | same language: | 
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 157 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 158 | \[ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 159 | r_1 \equiv r_2 \;\dn\; L(r_1) = L(r_2) | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 160 | \] | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 161 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 162 | \noindent | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 163 | It is relatively easy to verify that some concrete equivalences | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 164 | hold, for example | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 165 | |
| 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 166 | \begin{center}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 167 | \begin{tabular}{rcl}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 168 | $(a + b) + c$ & $\equiv$ & $a + (b + c)$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 169 | $a + a$ & $\equiv$ & $a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 170 | $a + b$ & $\equiv$ & $b + a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 171 | $(a \cdot b) \cdot c$ & $\equiv$ & $a \cdot (b \cdot c)$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 172 | $c \cdot (a + b)$ & $\equiv$ & $(c \cdot a) + (c \cdot b)$\\ | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 173 | \end{tabular}
 | 
| 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 174 | \end{center}
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 175 | |
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 176 | \noindent | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 177 | but also easy to verify that the following regular expressions | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 178 | are \emph{not} equivalent
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 179 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 180 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 181 | \begin{tabular}{rcl}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 182 | $a \cdot a$ & $\not\equiv$ & $a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 183 | $a + (b \cdot c)$ & $\not\equiv$ & $(a + b) \cdot (a + c)$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 184 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 185 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 186 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 187 | \noindent I leave it to you to verify these equivalences and | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 188 | non-equivalences. It is also interesting to look at some | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 189 | corner cases involving $\ONE$ and $\ZERO$: | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 190 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 191 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 192 | \begin{tabular}{rcl}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 193 | $a \cdot \ZERO$ & $\not\equiv$ & $a$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 194 | $a + \ONE$ & $\not\equiv$ & $a$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 195 | $\ONE$ & $\equiv$ & $\ZERO^*$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 196 | $\ONE^*$ & $\equiv$ & $\ONE$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 197 | $\ZERO^*$ & $\not\equiv$ & $\ZERO$\\ | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 198 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 199 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 200 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 201 | \noindent Again I leave it to you to make sure you agree | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 202 | with these equivalences and non-equivalences. | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 203 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 204 | |
| 318 
7975e4f0d4de
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
296diff
changeset | 205 | For our matching algorithm however the following seven | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 206 | equivalences will play an important role: | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 207 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 208 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 209 | \begin{tabular}{rcl}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 210 | $r + \ZERO$ & $\equiv$ & $r$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 211 | $\ZERO + r$ & $\equiv$ & $r$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 212 | $r \cdot \ONE$ & $\equiv$ & $r$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 213 | $\ONE \cdot r$ & $\equiv$ & $r$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 214 | $r \cdot \ZERO$ & $\equiv$ & $\ZERO$\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 215 | $\ZERO \cdot r$ & $\equiv$ & $\ZERO$\\ | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 216 | $r + r$ & $\equiv$ & $r$ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 217 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 218 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 219 | |
| 412 | 220 | \noindent which always hold no matter what the regular expression $r$ | 
| 221 | looks like. The first two are easy to verify since $L(\ZERO)$ is the | |
| 222 | empty set. The next two are also easy to verify since $L(\ONE) = | |
| 223 | \{[]\}$ and appending the empty string to every string of another set,
 | |
| 224 | leaves the set unchanged. Be careful to fully comprehend the fifth and | |
| 225 | sixth equivalence: if you concatenate two sets of strings and one is | |
| 226 | the empty set, then the concatenation will also be the empty set. To | |
| 227 | see this, check the definition of $\_ @ \_$ for sets. The last | |
| 228 | equivalence is again trivial. | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 229 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 230 | What will be important later on is that we can orient these | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 231 | equivalences and read them from left to right. In this way we | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 232 | can view them as \emph{simplification rules}. Consider for 
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 233 | example the regular expression | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 234 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 235 | \begin{equation}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 236 | (r_1 + \ZERO) \cdot \ONE + ((\ONE + r_2) + r_3) \cdot (r_4 \cdot \ZERO) | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 237 | \label{big}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 238 | \end{equation}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 239 | |
| 412 | 240 | \noindent If we can find an equivalent regular expression that is | 
| 488 | 241 | simpler (that usually means smaller), then this might potentially make | 
| 242 | our matching algorithm run faster. We can look for such a simpler | |
| 243 | regular expression $r'$ because whether a string $s$ is in $L(r)$ or | |
| 244 | in $L(r')$ with $r\equiv r'$ will always give the same answer. Yes? | |
| 245 | ||
| 246 | In the example above you will see that the regular expression is | |
| 247 | equivalent to just $r_1$. You can verify this by iteratively applying | |
| 248 | the simplification rules from above: | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 249 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 250 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 251 | \begin{tabular}{ll}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 252 | & $(r_1 + \ZERO) \cdot \ONE + ((\ONE + r_2) + r_3) \cdot | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 253 | (\underline{r_4 \cdot \ZERO})$\smallskip\\
 | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 254 | $\equiv$ & $(r_1 + \ZERO) \cdot \ONE + \underline{((\ONE + r_2) + r_3) \cdot 
 | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 255 | \ZERO}$\smallskip\\ | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 256 | $\equiv$ & $\underline{(r_1 + \ZERO) \cdot \ONE} + \ZERO$\smallskip\\
 | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 257 | $\equiv$ & $(\underline{r_1 + \ZERO}) + \ZERO$\smallskip\\
 | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 258 | $\equiv$ & $\underline{r_1 + \ZERO}$\smallskip\\
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 259 | $\equiv$ & $r_1$\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 260 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 261 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 262 | |
| 296 
796b9b81ac8d
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
291diff
changeset | 263 | \noindent In each step, I underlined where a simplification | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 264 | rule is applied. Our matching algorithm in the next section | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 265 | will often generate such ``useless'' $\ONE$s and | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 266 | $\ZERO$s, therefore simplifying them away will make the | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 267 | algorithm quite a bit faster. | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 268 | |
| 488 | 269 | Finally here are three equivalences between regular expressions which are | 
| 479 | 270 | not so obvious: | 
| 271 | ||
| 272 | \begin{center}
 | |
| 273 | \begin{tabular}{rcl}
 | |
| 274 | $r^*$ & $\equiv$ & $1 + r\cdot r^*$\\ | |
| 275 | $(r_1 + r_2)^*$ & $\equiv$ & $r_1^* \cdot (r_2\cdot r_1^*)^*$\\ | |
| 276 | $(r_1 \cdot r_2)^*$ & $\equiv$ & $1 + r_1\cdot (r_2 \cdot r_1)^* \cdot r_2$\\ | |
| 277 | \end{tabular}
 | |
| 278 | \end{center}
 | |
| 279 | ||
| 280 | \noindent | |
| 566 | 281 | We will not use them in our algorithm, but feel free to convince yourself | 
| 492 | 282 | that they hold. As an aside, there has been a lot of research about | 
| 283 | questions like: Can one always decide when two regular expressions are | |
| 488 | 284 | equivalent or not? What does an algorithm look like to decide this | 
| 510 | 285 | efficiently? So in general it is not a trivial problem. | 
| 479 | 286 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 287 | \subsection*{The Matching Algorithm}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 288 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 289 | The algorithm we will define below consists of two parts. One | 
| 412 | 290 | is the function $\textit{nullable}$ which takes a regular expression as
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 291 | argument and decides whether it can match the empty string | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 292 | (this means it returns a boolean in Scala). This can be easily | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 293 | defined recursively as follows: | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 294 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 295 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 296 | \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
 | 
| 412 | 297 | $\textit{nullable}(\ZERO)$      & $\dn$ & $\textit{false}$\\
 | 
| 298 | $\textit{nullable}(\ONE)$         & $\dn$ & $\textit{true}$\\
 | |
| 299 | $\textit{nullable}(c)$                & $\dn$ & $\textit{false}$\\
 | |
| 300 | $\textit{nullable}(r_1 + r_2)$     & $\dn$ &  $\textit{nullable}(r_1) \vee \textit{nullable}(r_2)$\\ 
 | |
| 301 | $\textit{nullable}(r_1 \cdot r_2)$ & $\dn$ &  $\textit{nullable}(r_1) \wedge \textit{nullable}(r_2)$\\
 | |
| 302 | $\textit{nullable}(r^*)$              & $\dn$ & $\textit{true}$ \\
 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 303 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 304 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 305 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 306 | \noindent The idea behind this function is that the following | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 307 | property holds: | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 308 | |
| 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 309 | \[ | 
| 412 | 310 | \textit{nullable}(r) \;\;\text{if and only if}\;\; []\in L(r)
 | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 311 | \] | 
| 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 312 | |
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 313 | \noindent Note on the left-hand side of the if-and-only-if we | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 314 | have a function we can implement; on the right we have its | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 315 | specification (which we cannot implement in a programming | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 316 | language). | 
| 124 
dd8b5a3dac0a
adde
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
123diff
changeset | 317 | |
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 318 | The other function of our matching algorithm calculates a | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 319 | \emph{derivative} of a regular expression. This is a function
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 320 | which will take a regular expression, say $r$, and a | 
| 412 | 321 | character, say $c$, as arguments and returns a new regular | 
| 488 | 322 | expression. Be mindful that the intuition behind this function | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 323 | is not so easy to grasp on first reading. Essentially this | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 324 | function solves the following problem: if $r$ can match a | 
| 488 | 325 | string of the form $c\!::\!s$, what does a regular | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 326 | expression look like that can match just $s$? The definition | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 327 | of this function is as follows: | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 328 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 329 | \begin{center}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 330 | \begin{tabular}{l@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
 | 
| 414 | 331 |   $\textit{der}\, c\, (\ZERO)$      & $\dn$ & $\ZERO$\\
 | 
| 332 |   $\textit{der}\, c\, (\ONE)$         & $\dn$ & $\ZERO$ \\
 | |
| 333 |   $\textit{der}\, c\, (d)$                & $\dn$ & if $c = d$ then $\ONE$ else $\ZERO$\\
 | |
| 334 |   $\textit{der}\, c\, (r_1 + r_2)$        & $\dn$ & $\textit{der}\, c\, r_1 + \textit{der}\, c\, r_2$\\
 | |
| 335 |   $\textit{der}\, c\, (r_1 \cdot r_2)$  & $\dn$  & if $\textit{nullable} (r_1)$\\
 | |
| 336 |   & & then $(\textit{der}\,c\,r_1) \cdot r_2 + \textit{der}\, c\, r_2$\\ 
 | |
| 337 |   & & else $(\textit{der}\, c\, r_1) \cdot r_2$\\
 | |
| 338 |   $\textit{der}\, c\, (r^*)$          & $\dn$ & $(\textit{der}\,c\,r) \cdot (r^*)$
 | |
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 339 |   \end{tabular}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 340 | \end{center}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 341 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 342 | \noindent The first two clauses can be rationalised as | 
| 414 | 343 | follows: recall that $\textit{der}$ should calculate a regular
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 344 | expression so that given the ``input'' regular expression can | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 345 | match a string of the form $c\!::\!s$, we want a regular | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 346 | expression for $s$. Since neither $\ZERO$ nor $\ONE$ | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 347 | can match a string of the form $c\!::\!s$, we return | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 348 | $\ZERO$. In the third case we have to make a | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 349 | case-distinction: In case the regular expression is $c$, then | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 350 | clearly it can recognise a string of the form $c\!::\!s$, just | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 351 | that $s$ is the empty string. Therefore we return the | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 352 | $\ONE$-regular expression. In the other case we again | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 353 | return $\ZERO$ since no string of the $c\!::\!s$ can be | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 354 | matched. Next come the recursive cases, which are a bit more | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 355 | involved. Fortunately, the $+$-case is still relatively | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 356 | straightforward: all strings of the form $c\!::\!s$ are either | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 357 | matched by the regular expression $r_1$ or $r_2$. So we just | 
| 414 | 358 | have to recursively call $\textit{der}$ with these two regular
 | 
| 332 
4755ad4b457b
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
325diff
changeset | 359 | expressions and compose the results again with $+$. Makes | 
| 412 | 360 | sense? | 
| 361 | ||
| 362 | The $\cdot$-case is more complicated: if $r_1\cdot r_2$ | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 363 | matches a string of the form $c\!::\!s$, then the first part | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 364 | must be matched by $r_1$. Consequently, it makes sense to | 
| 414 | 365 | construct the regular expression for $s$ by calling $\textit{der}$ with
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 366 | $r_1$ and ``appending'' $r_2$. There is however one exception | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 367 | to this simple rule: if $r_1$ can match the empty string, then | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 368 | all of $c\!::\!s$ is matched by $r_2$. So in case $r_1$ is | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 369 | nullable (that is can match the empty string) we have to allow | 
| 414 | 370 | the choice $\textit{der}\,c\,r_2$ for calculating the regular
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 371 | expression that can match $s$. Therefore we have to add the | 
| 414 | 372 | regular expression $\textit{der}\,c\,r_2$ in the result. The $*$-case
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 373 | is again simple: if $r^*$ matches a string of the form | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 374 | $c\!::\!s$, then the first part must be ``matched'' by a | 
| 414 | 375 | single copy of $r$. Therefore we call recursively $\textit{der}\,c\,r$
 | 
| 376 | and ``append'' $r^*$ in order to match the rest of $s$. Still | |
| 377 | makes sense? | |
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 378 | |
| 488 | 379 | If all this did not make sense yet, here is another way to explain the | 
| 380 | definition of $\textit{der}$ by considering the following operation on
 | |
| 381 | sets: | |
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 382 | |
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 383 | \begin{equation}\label{Der}
 | 
| 414 | 384 | \textit{Der}\,c\,A\;\dn\;\{s\,|\,c\!::\!s \in A\}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 385 | \end{equation}
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 386 | |
| 291 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 387 | \noindent This operation essentially transforms a set of | 
| 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 388 | strings $A$ by filtering out all strings that do not start | 
| 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 389 | with $c$ and then strips off the $c$ from all the remaining | 
| 
201c2c6d8696
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
272diff
changeset | 390 | strings. For example suppose $A = \{f\!oo, bar, f\!rak\}$ then
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 391 | |
| 414 | 392 | \[ \textit{Der}\,f\,A = \{oo, rak\}\quad,\quad 
 | 
| 393 |    \textit{Der}\,b\,A = \{ar\} \quad \text{and} \quad 
 | |
| 394 |    \textit{Der}\,a\,A = \{\} 
 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 395 | \] | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 396 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 397 | \noindent | 
| 414 | 398 | Note that in the last case $\textit{Der}$ is empty, because no string in $A$
 | 
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 399 | starts with $a$. With this operation we can state the following | 
| 414 | 400 | property about $\textit{der}$:
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 401 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 402 | \[ | 
| 414 | 403 | L(\textit{der}\,c\,r) = \textit{Der}\,c\,(L(r))
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 404 | \] | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 405 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 406 | \noindent | 
| 414 | 407 | This property clarifies what regular expression $\textit{der}$ calculates,
 | 
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 408 | namely take the set of strings that $r$ can match (that is $L(r)$), | 
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 409 | filter out all strings not starting with $c$ and strip off the $c$ | 
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 410 | from the remaining strings---this is exactly the language that | 
| 414 | 411 | $\textit{der}\,c\,r$ can match.
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 412 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 413 | If we want to find out whether the string $abc$ is matched by | 
| 414 | 414 | the regular expression $r_1$ then we can iteratively apply $\textit{der}$
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 415 | as follows | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 416 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 417 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 418 | \begin{tabular}{rll}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 419 | Input: $r_1$, $abc$\medskip\\ | 
| 414 | 420 | Step 1: & build derivative of $a$ and $r_1$ & $(r_2 = \textit{der}\,a\,r_1)$\smallskip\\
 | 
| 421 | Step 2: & build derivative of $b$ and $r_2$ & $(r_3 = \textit{der}\,b\,r_2)$\smallskip\\
 | |
| 433 
c08290ee4f1f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
416diff
changeset | 422 | Step 3: & build derivative of $c$ and $r_3$ & $(r_4 = \textit{der}\,c\,r_3)$\smallskip\\
 | 
| 
c08290ee4f1f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
416diff
changeset | 423 | Step 4: & the string is exhausted: & $(\textit{nullable}(r_4))$\\
 | 
| 
c08290ee4f1f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
416diff
changeset | 424 | & test whether $r_4$ can recognise the\\ | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 425 | & empty string\smallskip\\ | 
| 412 | 426 | Output: & result of this test $\Rightarrow \textit{true} \,\text{or}\, \textit{false}$\\        
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 427 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 428 | \end{center}
 | 
| 140 
1be892087df2
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
133diff
changeset | 429 | |
| 414 | 430 | \noindent Again the operation $\textit{Der}$ might help to rationalise
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 431 | this algorithm. We want to know whether $abc \in L(r_1)$. We | 
| 414 | 432 | do not know yet---but let us assume it is. Then $\textit{Der}\,a\,L(r_1)$
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 433 | builds the set where all the strings not starting with $a$ are | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 434 | filtered out. Of the remaining strings, the $a$ is stripped | 
| 412 | 435 | off. So we should still have $bc$ in the set. | 
| 436 | Then we continue with filtering out all strings not | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 437 | starting with $b$ and stripping off the $b$ from the remaining | 
| 414 | 438 | strings, that means we build $\textit{Der}\,b\,(\textit{Der}\,a\,(L(r_1)))$.
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 439 | Finally we filter out all strings not starting with $c$ and | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 440 | strip off $c$ from the remaining string. This is | 
| 414 | 441 | $\textit{Der}\,c\,(\textit{Der}\,b\,(\textit{Der}\,a\,(L(r_1))))$. Now if $abc$ was in the 
 | 
| 442 | original set ($L(r_1)$), then $\textit{Der}\,c\,(\textit{Der}\,b\,(\textit{Der}\,a\,(L(r_1))))$ 
 | |
| 412 | 443 | must contain the empty string. If not, then $abc$ was not in the | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 444 | language we started with. | 
| 140 
1be892087df2
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
133diff
changeset | 445 | |
| 414 | 446 | Our matching algorithm using $\textit{der}$ and $\textit{nullable}$ works
 | 
| 571 | 447 | similarly, just using regular expressions instead of sets. In order to | 
| 414 | 448 | define our algorithm we need to extend the notion of derivatives from single | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 449 | characters to strings. This can be done using the following | 
| 414 | 450 | function, taking a string and a regular expression as input and | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 451 | a regular expression as output. | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 452 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 453 | \begin{center}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 454 | \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 455 |   $\textit{ders}\, []\, r$     & $\dn$ & $r$ & \\
 | 
| 414 | 456 |   $\textit{ders}\, (c\!::\!s)\, r$ & $\dn$ & $\textit{ders}\,s\,(\textit{der}\,c\,r)$ & \\
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 457 |   \end{tabular}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 458 | \end{center}
 | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 459 | |
| 414 | 460 | \noindent This function iterates $\textit{der}$ taking one character at
 | 
| 488 | 461 | the time from the original string until the string is exhausted. | 
| 414 | 462 | Having $\textit{der}s$ in place, we can finally define our matching
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 463 | algorithm: | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 464 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 465 | \[ | 
| 571 | 466 | \textit{matches}\,r\,s \dn \textit{nullable}(\textit{ders}\,s\,r)
 | 
| 125 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 467 | \] | 
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 468 | |
| 
39c75cf4e079
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
124diff
changeset | 469 | \noindent | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 470 | and we can claim that | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 471 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 472 | \[ | 
| 571 | 473 | \textit{matches}\,r\,s\quad\text{if and only if}\quad s\in L(r)
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 474 | \] | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 475 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 476 | \noindent holds, which means our algorithm satisfies the | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 477 | specification. Of course we can claim many things\ldots | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 478 | whether the claim holds any water is a different question, | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 479 | which for example is the point of the Strand-2 Coursework. | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 480 | |
| 566 | 481 | This algorithm was introduced by Janusz Brzozowski in 1964, but | 
| 414 | 482 | is more widely known only in the last 10 or so years. Its | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 483 | main attractions are simplicity and being fast, as well as | 
| 566 | 484 | being easily extendible for other regular expressions such as | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 485 | $r^{\{n\}}$, $r^?$, $\sim{}r$ and so on (this is subject of
 | 
| 414 | 486 | Strand-1 Coursework 1). | 
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 487 | |
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 488 | \subsection*{The Matching Algorithm in Scala}
 | 
| 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
251diff
changeset | 489 | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 490 | Another attraction of the algorithm is that it can be easily | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 491 | implemented in a functional programming language, like Scala. | 
| 296 
796b9b81ac8d
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
291diff
changeset | 492 | Given the implementation of regular expressions in Scala shown | 
| 
796b9b81ac8d
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
291diff
changeset | 493 | in the first lecture and handout, the functions and subfunctions | 
| 
796b9b81ac8d
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
291diff
changeset | 494 | for \pcode{matches} are shown in Figure~\ref{scala1}.
 | 
| 126 
7c7185cb4f2b
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
125diff
changeset | 495 | |
| 
7c7185cb4f2b
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
125diff
changeset | 496 | \begin{figure}[p]
 | 
| 477 | 497 | \lstinputlisting[numbers=left,linebackgroundcolor= | 
| 498 |                   {\ifodd\value{lstnumber}\color{capri!3}\fi}]
 | |
| 499 |                   {../progs/app5.scala}
 | |
| 512 | 500 | \caption{A Scala implementation of \textit{nullable} and 
 | 
| 501 | derivative function. These functions are easy to | |
| 502 | implement in functional programming languages. This is because pattern | |
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 503 | matching and recursion allow us to mimic the mathematical | 
| 488 | 504 | definitions very closely. Nearly all functional | 
| 505 | programming languages support pattern matching and | |
| 506 |   recursion out of the box.\label{scala1}}
 | |
| 126 
7c7185cb4f2b
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
125diff
changeset | 507 | \end{figure}
 | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 508 | |
| 414 | 509 | |
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 510 | %Remember our second example involving the regular expression | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 511 | %$(a^*)^* \cdot b$ which could not match strings of $n$ \texttt{a}s. 
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 512 | %Java needed around 30 seconds to find this out a string with $n=28$. | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 513 | %It seems our algorithm is doing rather well in comparison: | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 514 | % | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 515 | %\begin{center}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 516 | %\begin{tikzpicture}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 517 | %\begin{axis}[
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 518 | %    title={Graph: $(a^*)^* \cdot b$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 519 | %    xlabel={$n$},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 520 | %    x label style={at={(1.05,0.0)}},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 521 | %    ylabel={time in secs},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 522 | % enlargelimits=false, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 523 | %    xtick={0,1000,...,6500},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 524 | % xmax=6800, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 525 | %    ytick={0,5,...,30},
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 526 | % ymax=34, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 527 | % scaled ticks=false, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 528 | % axis lines=left, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 529 | % width=8cm, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 530 | % height=4.5cm, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 531 | %    legend entries={Java,Scala V1},  
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 532 | % legend pos=north east, | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 533 | % legend cell align=left] | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 534 | %\addplot[cyan,mark=*, mark options={fill=white}] table {re-java.data};
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 535 | %\addplot[red,mark=triangle*,mark options={fill=white}] table {re1a.data};
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 536 | %\end{axis}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 537 | %\end{tikzpicture}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 538 | %\end{center}
 | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 539 | % | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 540 | %\noindent | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 541 | %This is not an error: it hardly takes more than half a second for | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 542 | %strings up to the length of 6500. After that we receive a | 
| 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 543 | %StackOverflow exception, but still\ldots | 
| 414 | 544 | |
| 545 | For running the algorithm with our first example, the evil | |
| 566 | 546 | regular expression $a^?{}^{\{n\}}\cdot a^{\{n\}}$, we need to implement
 | 
| 488 | 547 | the optional regular expression and the `exactly $n$-times | 
| 548 | regular expression'. This can be done with the translations | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 549 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 550 | \lstinputlisting[numbers=none]{../progs/app51.scala}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 551 | |
| 414 | 552 | \noindent Running the matcher with this example, we find it is | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 553 | slightly worse then the matcher in Ruby and Python. | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 554 | Ooops\ldots | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 555 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 556 | \begin{center}
 | 
| 414 | 557 | \begin{tikzpicture}
 | 
| 558 | \begin{axis}[    
 | |
| 415 | 559 |     title={Graph: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 414 | 560 |     xlabel={$n$},
 | 
| 561 |     x label style={at={(1.05,0.0)}},
 | |
| 562 |     ylabel={time in secs},
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 563 | enlargelimits=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 564 |     xtick={0,5,...,30},
 | 
| 415 | 565 | xmax=32, | 
| 414 | 566 |     ytick={0,5,...,30},
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 567 | scaled ticks=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 568 | axis lines=left, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 569 | width=6cm, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 570 | height=5cm, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 571 |     legend entries={Python,Ruby,Scala V1},  
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 572 | legend pos=outer north east, | 
| 415 | 573 | legend cell align=left] | 
| 434 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 574 | \addplot[blue,mark=*, mark options={fill=white}] table {re-python.data};
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 575 | \addplot[brown,mark=pentagon*, mark options={fill=white}] table {re-ruby.data};  
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 576 | \addplot[red,mark=triangle*,mark options={fill=white}] table {re1.data};  
 | 
| 414 | 577 | \end{axis}
 | 
| 578 | \end{tikzpicture}
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 579 | \end{center}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 580 | |
| 488 | 581 | \noindent Analysing this failure we notice that for $a^{\{n\}}$, for
 | 
| 582 | example, we generate quite big regular expressions: | |
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 583 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 584 | \begin{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 585 | \begin{tabular}{rl}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 586 | 1: & $a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 587 | 2: & $a\cdot a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 588 | 3: & $a\cdot a\cdot a$\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 589 | & \ldots\\ | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 590 | 13: & $a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a$\\ | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 591 | & \ldots | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 592 | \end{tabular}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 593 | \end{center}
 | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 594 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 595 | \noindent Our algorithm traverses such regular expressions at | 
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 596 | least once every time a derivative is calculated. So having | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 597 | large regular expressions will cause problems. This problem | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 598 | is aggravated by $a^?$ being represented as $a + \ONE$. | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 599 | |
| 488 | 600 | We can however fix this easily by having an explicit constructor for | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 601 | $r^{\{n\}}$. In Scala we would introduce a constructor like
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 602 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 603 | \begin{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 604 | \code{case class NTIMES(r: Rexp, n: Int) extends Rexp}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 605 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 606 | |
| 478 | 607 | \noindent With this fix we have a constant ``size'' regular expression | 
| 608 | for our running example no matter how large $n$ is (see the | |
| 609 | \texttt{size} section in the implementations).  This means we have to
 | |
| 610 | also add cases for \pcode{NTIMES} in the functions $\textit{nullable}$
 | |
| 611 | and $\textit{der}$. Does the change have any effect?
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 612 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 613 | \begin{center}
 | 
| 414 | 614 | \begin{tikzpicture}
 | 
| 615 | \begin{axis}[
 | |
| 415 | 616 |     title={Graph: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 414 | 617 |     xlabel={$n$},
 | 
| 618 |     x label style={at={(1.01,0.0)}},
 | |
| 619 |     ylabel={time in secs},
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 620 | enlargelimits=false, | 
| 477 | 621 |     xtick={0,200,...,1100},
 | 
| 622 | xmax=1200, | |
| 414 | 623 |     ytick={0,5,...,30},
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 624 | scaled ticks=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 625 | axis lines=left, | 
| 414 | 626 | width=10cm, | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 627 | height=5cm, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 628 |     legend entries={Python,Ruby,Scala V1,Scala V2},  
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 629 | legend pos=outer north east, | 
| 414 | 630 | legend cell align=left] | 
| 434 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 631 | \addplot[blue,mark=*, mark options={fill=white}] table {re-python.data};
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 632 | \addplot[brown,mark=pentagon*, mark options={fill=white}] table {re-ruby.data};  
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 633 | \addplot[red,mark=triangle*,mark options={fill=white}] table {re1.data};  
 | 
| 
8664ff87cd77
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
433diff
changeset | 634 | \addplot[green,mark=square*,mark options={fill=white}] table {re2.data};
 | 
| 414 | 635 | \end{axis}
 | 
| 636 | \end{tikzpicture}
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 637 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 638 | |
| 478 | 639 | \noindent Now we are talking business! The modified matcher can within | 
| 640 | 25 seconds handle regular expressions up to $n = 1,100$ before a | |
| 641 | StackOverflow is raised. Recall that Python and Ruby (and our first | |
| 642 | version, Scala V1) could only handle $n = 27$ or so in 30 | |
| 488 | 643 | seconds. We have not tried our algorithm on the second example $(a^*)^* \cdot | 
| 511 | 644 | b$---I leave this to you. | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 645 | |
| 412 | 646 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 647 | The moral is that our algorithm is rather sensitive to the | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 648 | size of regular expressions it needs to handle. This is of | 
| 414 | 649 | course obvious because both $\textit{nullable}$ and $\textit{der}$ frequently
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 650 | need to traverse the whole regular expression. There seems, | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 651 | however, one more issue for making the algorithm run faster. | 
| 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 652 | The derivative function often produces ``useless'' | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 653 | $\ZERO$s and $\ONE$s. To see this, consider $r = ((a | 
| 478 | 654 | \cdot b) + b)^*$ and the following three derivatives | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 655 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 656 | \begin{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 657 | \begin{tabular}{l}
 | 
| 414 | 658 | $\textit{der}\,a\,r = ((\ONE \cdot b) + \ZERO) \cdot r$\\
 | 
| 659 | $\textit{der}\,b\,r = ((\ZERO \cdot b) + \ONE)\cdot r$\\
 | |
| 660 | $\textit{der}\,c\,r = ((\ZERO \cdot b) + \ZERO)\cdot r$
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 661 | \end{tabular}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 662 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 663 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 664 | \noindent | 
| 488 | 665 | If we simplify them according to the simplification rules from the | 
| 666 | beginning, we can replace the right-hand sides by the smaller | |
| 667 | equivalent regular expressions | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 668 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 669 | \begin{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 670 | \begin{tabular}{l}
 | 
| 414 | 671 | $\textit{der}\,a\,r \equiv b \cdot r$\\
 | 
| 672 | $\textit{der}\,b\,r \equiv r$\\
 | |
| 673 | $\textit{der}\,c\,r \equiv \ZERO$
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 674 | \end{tabular}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 675 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 676 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 677 | \noindent I leave it to you to contemplate whether such a | 
| 478 | 678 | simplification can have any impact on the correctness of our algorithm | 
| 679 | (will it change any answers?). Figure~\ref{scala2} gives a
 | |
| 680 | simplification function that recursively traverses a regular | |
| 681 | expression and simplifies it according to the rules given at the | |
| 571 | 682 | beginning. There are only rules for $+$ and $\cdot$. There is | 
| 683 | no simplification rule for a star, because | |
| 478 | 684 | empirical data and also a little thought showed that simplifying under | 
| 685 | a star is a waste of computation time. The simplification function | |
| 686 | will be called after every derivation. This additional step removes | |
| 687 | all the ``junk'' the derivative function introduced. Does this improve | |
| 688 | the speed? You bet!! | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 689 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 690 | \begin{figure}[p]
 | 
| 477 | 691 | \lstinputlisting[numbers=left,linebackgroundcolor= | 
| 692 |   {\ifodd\value{lstnumber}\color{capri!3}\fi}]
 | |
| 693 |                 {../progs/app6.scala}
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 694 | \caption{The simplification function and modified 
 | 
| 325 
794c599cee53
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
318diff
changeset | 695 | \texttt{ders}-function; this function now
 | 
| 333 
8890852e18b7
updated coursework
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
332diff
changeset | 696 | calls \texttt{der} first, but then simplifies
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 697 | the resulting derivative regular expressions before | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 698 | building the next derivative, see | 
| 566 | 699 | Line~24.\label{scala2}}
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 700 | \end{figure}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 701 | |
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 702 | \begin{center}
 | 
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 703 | \begin{tikzpicture}
 | 
| 414 | 704 | \begin{axis}[
 | 
| 415 | 705 |     title={Graph: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 414 | 706 |     xlabel={$n$},
 | 
| 707 |     x label style={at={(1.04,0.0)}},
 | |
| 708 |     ylabel={time in secs},
 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 709 | enlargelimits=false, | 
| 478 | 710 |     xtick={0,2500,...,10000},
 | 
| 711 | xmax=12000, | |
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 712 |     ytick={0,5,...,30},
 | 
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 713 | ymax=32, | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 714 | scaled ticks=false, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 715 | axis lines=left, | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 716 | width=9cm, | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 717 | height=5cm, | 
| 415 | 718 |     legend entries={Scala V2,Scala V3},
 | 
| 719 | legend pos=outer north east, | |
| 720 | legend cell align=left] | |
| 721 | \addplot[green,mark=square*,mark options={fill=white}] table {re2.data};
 | |
| 268 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 722 | \addplot[black,mark=square*,mark options={fill=white}] table {re3.data};
 | 
| 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 723 | \end{axis}
 | 
| 
18bef085a7ca
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
263diff
changeset | 724 | \end{tikzpicture}
 | 
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 725 | \end{center}
 | 
| 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 726 | |
| 415 | 727 | \noindent | 
| 510 | 728 | To recap, Python and Ruby needed approximately 30 seconds to match a | 
| 478 | 729 | string of 28 \texttt{a}s and the regular expression $a^{?\{n\}} \cdot
 | 
| 730 | a^{\{n\}}$.  We need a third of this time to do the same with strings
 | |
| 566 | 731 | up to 11,000 \texttt{a}s.  Similarly, Java 8 and Python needed 30
 | 
| 478 | 732 | seconds to find out the regular expression $(a^*)^* \cdot b$ does not | 
| 566 | 733 | match the string of 28 \texttt{a}s. In Java 9 and later this has been 
 | 
| 734 | cranked up to 39,000 \texttt{a}s, but we can do the same in the same 
 | |
| 571 | 735 | amount of time for strings composed of nearly 6,000,000 \texttt{a}s. 
 | 
| 736 | This is shown in the following plot. | |
| 415 | 737 | |
| 738 | ||
| 414 | 739 | \begin{center}
 | 
| 740 | \begin{tikzpicture}
 | |
| 741 | \begin{axis}[
 | |
| 415 | 742 |     title={Graph: $(a^*)^* \cdot b$ and strings $\underbrace{a\ldots a}_{n}$},
 | 
| 414 | 743 |     xlabel={$n$},
 | 
| 744 |     ylabel={time in secs},
 | |
| 745 | enlargelimits=false, | |
| 478 | 746 | ymax=35, | 
| 414 | 747 |     ytick={0,5,...,30},
 | 
| 748 | axis lines=left, | |
| 550 | 749 | %%scaled ticks=false, | 
| 478 | 750 |     x label style={at={(1.09,0.0)}},
 | 
| 550 | 751 | %%xmax=7700000, | 
| 414 | 752 | width=9cm, | 
| 753 | height=5cm, | |
| 478 | 754 |     legend entries={Scala V3},
 | 
| 415 | 755 | legend pos=outer north east, | 
| 756 | legend cell align=left] | |
| 478 | 757 | %\addplot[green,mark=square*,mark options={fill=white}] table {re2a.data};
 | 
| 414 | 758 | \addplot[black,mark=square*,mark options={fill=white}] table {re3a.data};
 | 
| 759 | \end{axis}
 | |
| 760 | \end{tikzpicture}
 | |
| 761 | \end{center}
 | |
| 762 | ||
| 415 | 763 | \subsection*{Epilogue}
 | 
| 764 | ||
| 550 | 765 | (23/Aug/2016) I found another place where this algorithm can | 
| 488 | 766 | be sped up (this idea is not integrated with what is coming next, but | 
| 767 | I present it nonetheless). The idea is to not define \texttt{ders}
 | |
| 768 | that it iterates the derivative character-by-character, but in bigger | |
| 769 | chunks. The resulting code for \texttt{ders2} looks as follows:
 | |
| 415 | 770 | |
| 771 | \lstinputlisting[numbers=none]{../progs/app52.scala} 
 | |
| 772 | ||
| 773 | \noindent | |
| 774 | I have not fully understood why this version is much faster, | |
| 775 | but it seems it is a combination of the clauses for \texttt{ALT}
 | |
| 776 | and \texttt{SEQ}. In the latter case we call \texttt{der} with 
 | |
| 777 | a single character and this potentially produces an alternative. | |
| 510 | 778 | The derivative of such an alternative can then be more efficiently | 
| 415 | 779 | calculated by \texttt{ders2} since it pushes a whole string
 | 
| 780 | under an \texttt{ALT}. The numbers are that in the second case  
 | |
| 781 | $(a^*)^* \cdot b$ both versions are pretty much the same, but in the | |
| 782 | first case $a^{?\{n\}} \cdot a^{\{n\}}$ the improvement gives 
 | |
| 783 | another factor of 100 speedup. Nice! | |
| 414 | 784 | |
| 415 | 785 | \begin{center}
 | 
| 786 | \begin{tabular}{cc}
 | |
| 787 | \begin{tikzpicture}
 | |
| 788 | \begin{axis}[
 | |
| 789 |     title={Graph: $a^{?\{n\}} \cdot a^{\{n\}}$ and strings $\underbrace{a\ldots a}_{n}$},
 | |
| 790 |     xlabel={$n$},
 | |
| 791 |     x label style={at={(1.04,0.0)}},
 | |
| 792 |     ylabel={time in secs},
 | |
| 793 | enlargelimits=false, | |
| 794 | xmax=7100000, | |
| 795 |     ytick={0,5,...,30},
 | |
| 796 | ymax=33, | |
| 797 | %scaled ticks=false, | |
| 798 | axis lines=left, | |
| 488 | 799 | width=5.3cm, | 
| 415 | 800 | height=5cm, | 
| 801 |     legend entries={Scala V3, Scala V4},
 | |
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 802 |     legend style={at={(0.1,-0.2)},anchor=north}]
 | 
| 415 | 803 | \addplot[black,mark=square*,mark options={fill=white}] table {re3.data};
 | 
| 804 | \addplot[purple,mark=square*,mark options={fill=white}] table {re4.data};
 | |
| 805 | \end{axis}
 | |
| 806 | \end{tikzpicture}
 | |
| 807 | & | |
| 808 | \begin{tikzpicture}
 | |
| 809 | \begin{axis}[
 | |
| 810 |     title={Graph: $(a^*)^* \cdot b$ and strings $\underbrace{a\ldots a}_{n}$},
 | |
| 811 |     xlabel={$n$},
 | |
| 812 |     x label style={at={(1.09,0.0)}},
 | |
| 813 |     ylabel={time in secs},
 | |
| 814 | enlargelimits=false, | |
| 488 | 815 | xmax=8200000, | 
| 415 | 816 |     ytick={0,5,...,30},
 | 
| 817 | ymax=33, | |
| 818 | %scaled ticks=false, | |
| 819 | axis lines=left, | |
| 488 | 820 | width=5.3cm, | 
| 415 | 821 | height=5cm, | 
| 822 |     legend entries={Scala V3, Scala V4},
 | |
| 443 
cd43d8c6eb84
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
434diff
changeset | 823 |     legend style={at={(0.1,-0.2)},anchor=north}]
 | 
| 415 | 824 | \addplot[black,mark=square*,mark options={fill=white}] table {re3a.data};
 | 
| 825 | \addplot[purple,mark=square*,mark options={fill=white}] table {re4a.data};
 | |
| 826 | \end{axis}
 | |
| 827 | \end{tikzpicture}
 | |
| 828 | \end{tabular}
 | |
| 829 | \end{center}
 | |
| 414 | 830 | |
| 412 | 831 | |
| 334 
fd89a63e9db3
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
333diff
changeset | 832 | \section*{Proofs}
 | 
| 
fd89a63e9db3
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
333diff
changeset | 833 | |
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 834 | You might not like doing proofs. But they serve a very | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 835 | important purpose in Computer Science: How can we be sure that | 
| 488 | 836 | our algorithm matches its specification? We can try to test | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 837 | the algorithm, but that often overlooks corner cases and an | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 838 | exhaustive testing is impossible (since there are infinitely | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 839 | many inputs). Proofs allow us to ensure that an algorithm | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 840 | really meets its specification. | 
| 338 
f16120cb4e19
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
334diff
changeset | 841 | |
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 842 | For the programs we look at in this module, the proofs will | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 843 | mostly by some form of induction. Remember that regular | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 844 | expressions are defined as | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 845 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 846 | \begin{center}
 | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 847 | \begin{tabular}{r@{\hspace{1mm}}r@{\hspace{1mm}}l@{\hspace{13mm}}l}
 | 
| 512 | 848 | $r$ & $::=$ & $\ZERO$ & nothing\\ | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 849 |         & $\mid$ & $\ONE$           & empty string / \texttt{""} / []\\
 | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 850 | & $\mid$ & $c$ & single character\\ | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 851 | & $\mid$ & $r_1 + r_2$ & alternative / choice\\ | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 852 | & $\mid$ & $r_1 \cdot r_2$ & sequence\\ | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 853 | & $\mid$ & $r^*$ & star (zero or more)\\ | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 854 |   \end{tabular}
 | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 855 | \end{center}
 | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 856 | |
| 488 | 857 | \noindent If you want to show a property $P(r)$ for \emph{all} 
 | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 858 | regular expressions $r$, then you have to follow essentially | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 859 | the recipe: | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 860 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 861 | \begin{itemize}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 862 | \item $P$ has to hold for $\ZERO$, $\ONE$ and $c$ | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 863 | (these are the base cases). | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 864 | \item $P$ has to hold for $r_1 + r_2$ under the assumption | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 865 | that $P$ already holds for $r_1$ and $r_2$. | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 866 | \item $P$ has to hold for $r_1 \cdot r_2$ under the | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 867 | assumption that $P$ already holds for $r_1$ and $r_2$. | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 868 | \item $P$ has to hold for $r^*$ under the assumption | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 869 | that $P$ already holds for $r$. | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 870 | \end{itemize}
 | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 871 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 872 | \noindent | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 873 | A simple proof is for example showing the following | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 874 | property: | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 875 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 876 | \begin{equation}
 | 
| 412 | 877 | \textit{nullable}(r) \;\;\text{if and only if}\;\; []\in L(r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 878 | \label{nullableprop}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 879 | \end{equation}
 | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 880 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 881 | \noindent | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 882 | Let us say that this property is $P(r)$, then the first case | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 883 | we need to check is whether $P(\ZERO)$ (see recipe | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 884 | above). So we have to show that | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 885 | |
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 886 | \[ | 
| 412 | 887 | \textit{nullable}(\ZERO) \;\;\text{if and only if}\;\; 
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 888 | []\in L(\ZERO) | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 889 | \] | 
| 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 890 | |
| 412 | 891 | \noindent whereby $\textit{nullable}(\ZERO)$ is by definition of
 | 
| 892 | the function $\textit{nullable}$ always $\textit{false}$. We also have
 | |
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 893 | that $L(\ZERO)$ is by definition $\{\}$. It is
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 894 | impossible that the empty string $[]$ is in the empty set. | 
| 339 
bc395ccfba7f
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
338diff
changeset | 895 | Therefore also the right-hand side is false. Consequently we | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 896 | verified this case: both sides are false. We would still need | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 897 | to do this for $P(\ONE)$ and $P(c)$. I leave this to | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 898 | you to verify. | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 899 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 900 | Next we need to check the inductive cases, for example | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 901 | $P(r_1 + r_2)$, which is | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 902 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 903 | \begin{equation}
 | 
| 412 | 904 | \textit{nullable}(r_1 + r_2) \;\;\text{if and only if}\;\; 
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 905 | []\in L(r_1 + r_2) | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 906 | \label{propalt}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 907 | \end{equation}
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 908 | |
| 488 | 909 | \noindent The difference to the base cases is that in the inductive | 
| 910 | cases we can already assume we proved $P$ for the components, that is | |
| 911 | we can assume. | |
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 912 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 913 | \begin{center}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 914 | \begin{tabular}{l}
 | 
| 412 | 915 | $\textit{nullable}(r_1) \;\;\text{if and only if}\;\; []\in L(r_1)$ and\\
 | 
| 916 | $\textit{nullable}(r_2) \;\;\text{if and only if}\;\; []\in L(r_2)$\\
 | |
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 917 | \end{tabular}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 918 | \end{center}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 919 | |
| 488 | 920 | \noindent These are called the induction hypotheses. To check this | 
| 412 | 921 | case, we can start from $\textit{nullable}(r_1 + r_2)$, which by 
 | 
| 488 | 922 | definition of $\textit{nullable}$ is
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 923 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 924 | \[ | 
| 412 | 925 | \textit{nullable}(r_1) \vee \textit{nullable}(r_2)
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 926 | \] | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 927 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 928 | \noindent Using the two induction hypotheses from above, | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 929 | we can transform this into | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 930 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 931 | \[ | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 932 | [] \in L(r_1) \vee []\in(r_2) | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 933 | \] | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 934 | |
| 412 | 935 | \noindent We just replaced the $\textit{nullable}(\ldots)$ parts by
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 936 | the equivalent $[] \in L(\ldots)$ from the induction | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 937 | hypotheses. A bit of thinking convinces you that if | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 938 | $[] \in L(r_1) \vee []\in L(r_2)$ then the empty string | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 939 | must be in the union $L(r_1)\cup L(r_2)$, that is | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 940 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 941 | \[ | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 942 | [] \in L(r_1)\cup L(r_2) | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 943 | \] | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 944 | |
| 488 | 945 | \noindent but this is by definition of $L$ exactly $[] \in L(r_1 + | 
| 946 | r_2)$, which we needed to establish according to statement in | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 947 | \eqref{propalt}. What we have shown is that starting from
 | 
| 412 | 948 | $\textit{nullable}(r_1 + r_2)$ we have done equivalent transformations
 | 
| 488 | 949 | to end up with $[] \in L(r_1 + r_2)$. Consequently we have established | 
| 950 | that $P(r_1 + r_2)$ holds. | |
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 951 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 952 | In order to complete the proof we would now need to look | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 953 | at the cases \mbox{$P(r_1\cdot r_2)$} and $P(r^*)$. Again I let you
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 954 | check the details. | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 955 | |
| 488 | 956 | You might also have to do induction proofs over strings. | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 957 | That means you want to establish a property $P(s)$ for all | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 958 | strings $s$. For this remember strings are lists of | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 959 | characters. These lists can be either the empty list or a | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 960 | list of the form $c::s$. If you want to perform an induction | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 961 | proof for strings you need to consider the cases | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 962 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 963 | \begin{itemize}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 964 | \item $P$ has to hold for $[]$ (this is the base case). | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 965 | \item $P$ has to hold for $c::s$ under the assumption | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 966 | that $P$ already holds for $s$. | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 967 | \end{itemize}
 | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 968 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 969 | \noindent | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 970 | Given this recipe, I let you show | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 971 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 972 | \begin{equation}
 | 
| 414 | 973 | \textit{Ders}\,s\,(L(r)) = L(\textit{ders}\,s\,r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 974 | \label{dersprop}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 975 | \end{equation}
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 976 | |
| 414 | 977 | \noindent by induction on $s$. Recall $\textit{Der}$ is defined for 
 | 
| 978 | character---see \eqref{Der}; $\textit{Ders}$ is similar, but for strings:
 | |
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 979 | |
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 980 | \[ | 
| 414 | 981 | \textit{Ders}\,s\,A\;\dn\;\{s'\,|\,s @ s' \in A\}
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 982 | \] | 
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 983 | |
| 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 984 | \noindent In this proof you can assume the following property | 
| 414 | 985 | for $der$ and $\textit{Der}$ has already been proved, that is you can
 | 
| 399 
5c1fbb39c93e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
394diff
changeset | 986 | assume | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 987 | |
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 988 | \[ | 
| 414 | 989 | L(\textit{der}\,c\,r) = \textit{Der}\,c\,(L(r))
 | 
| 340 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 990 | \] | 
| 
c49122dbcdd1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
339diff
changeset | 991 | |
| 488 | 992 | \noindent holds (this would be of course another property that needs | 
| 993 | to be proved in a side-lemma by induction on $r$). This is a bit | |
| 994 | more challenging, but not impossible. | |
| 338 
f16120cb4e19
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
334diff
changeset | 995 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 996 | To sum up, using reasoning like the one shown above allows us | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 997 | to show the correctness of our algorithm. To see this, | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 998 | start from the specification | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 999 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1000 | \[ | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1001 | s \in L(r) | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1002 | \] | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1003 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1004 | \noindent That is the problem we want to solve. Thinking a | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1005 | little, you will see that this problem is equivalent to the | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1006 | following problem | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1007 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1008 | \begin{equation}
 | 
| 414 | 1009 | [] \in \textit{Ders}\,s\,(L(r))
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1010 | \label{dersstep}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1011 | \end{equation}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1012 | |
| 488 | 1013 | \noindent You agree?  But we have shown above in \eqref{dersprop},
 | 
| 1014 | that the $\textit{Ders}$ can be replaced by
 | |
| 1015 | $L(\textit{ders}\ldots)$. That means \eqref{dersstep} is equivalent to
 | |
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1016 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1017 | \begin{equation}
 | 
| 414 | 1018 | [] \in L(\textit{ders}\,s\,r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1019 | \label{prefinalstep}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1020 | \end{equation}
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1021 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1022 | \noindent We have also shown that testing whether the empty | 
| 412 | 1023 | string is in a language is equivalent to the $\textit{nullable}$
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1024 | function; see \eqref{nullableprop}. That means
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1025 | \eqref{prefinalstep} is equivalent with
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1026 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1027 | \[ | 
| 414 | 1028 | \textit{nullable}(\textit{ders}\,s\,r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1029 | \] | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1030 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1031 | \noindent But this is just the definition of $matches$ | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1032 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1033 | \[ | 
| 414 | 1034 | matches\,s\,r \dn nullable(\textit{ders}\,s\,r)
 | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1035 | \] | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1036 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1037 | \noindent In effect we have shown | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1038 | |
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1039 | \[ | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1040 | matches\,s\,r\;\;\text{if and only if}\;\;
 | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1041 | s\in L(r) | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1042 | \] | 
| 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1043 | |
| 488 | 1044 | \noindent which is the property we set out to prove: our algorithm | 
| 1045 | meets its specification. To have done so, requires a few induction | |
| 1046 | proofs about strings and regular expressions. Following the \emph{induction
 | |
| 1047 | recipes} is already a big step in actually performing these proofs. | |
| 1048 | If you do not believe it, proofs have helped me to make sure my code | |
| 1049 | is correct and in several instances prevented me of letting slip | |
| 566 | 1050 | embarrassing mistakes into the `wild'. | 
| 343 
539b2e88f5b9
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
340diff
changeset | 1051 | |
| 262 
ee4304bc6350
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
261diff
changeset | 1052 | \end{document}
 | 
| 261 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 1053 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 1054 | |
| 
24531cfaa36a
updated handouts
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
259diff
changeset | 1055 | |
| 566 | 1056 | % !TeX program = latexmk -xelatex | 
| 123 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1057 | %%% Local Variables: | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1058 | %%% mode: latex | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1059 | %%% TeX-master: t | 
| 
a75f9c9d8f94
added
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: diff
changeset | 1060 | %%% End: |