author | Christian Urban <urbanc@in.tum.de> |
Wed, 17 Jul 2019 11:17:52 +0100 | |
changeset 621 | cf287db8dc15 |
parent 402 | 55f097ab96c9 |
child 953 | 5e070fb0332a |
permissions | -rw-r--r-- |
20 | 1 |
\documentclass{article} |
402
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
2 |
\usepackage{../style} |
20 | 3 |
|
4 |
\begin{document} |
|
5 |
||
6 |
\section*{Proof} |
|
7 |
||
8 |
Recall the definitions for regular expressions and the language associated with a regular expression: |
|
9 |
||
10 |
\begin{center} |
|
11 |
\begin{tabular}{c} |
|
12 |
\begin{tabular}[t]{rcl} |
|
402
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
13 |
$r$ & $::=$ & $\ZERO$ \\ |
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
14 |
& $\mid$ & $\ONE$ \\ |
20 | 15 |
& $\mid$ & $c$ \\ |
16 |
& $\mid$ & $r_1 \cdot r_2$ \\ |
|
17 |
& $\mid$ & $r_1 + r_2$ \\ |
|
18 |
& $\mid$ & $r^*$ \\ |
|
19 |
\end{tabular}\hspace{10mm} |
|
20 |
\begin{tabular}[t]{r@{\hspace{1mm}}c@{\hspace{1mm}}l} |
|
402
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
21 |
$L(\ZERO)$ & $\dn$ & $\varnothing$ \\ |
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
22 |
$L(\ONE)$ & $\dn$ & $\{\texttt{""}\}$ \\ |
20 | 23 |
$L(c)$ & $\dn$ & $\{\texttt{"}c\texttt{"}\}$ \\ |
24 |
$L(r_1 \cdot r_2)$ & $\dn$ & $L(r_1) \,@\, L(r_2)$ \\ |
|
25 |
$L(r_1 + r_2)$ & $\dn$ & $L(r_1) \cup L(r_2)$ \\ |
|
26 |
$L(r^*)$ & $\dn$ & $\bigcup_{n\ge 0} L(r)^n$ \\ |
|
27 |
\end{tabular} |
|
28 |
\end{tabular} |
|
29 |
\end{center} |
|
30 |
||
31 |
\noindent |
|
32 |
We also defined the notion of a derivative of a regular expression (the derivative with respect to a character): |
|
33 |
||
34 |
\begin{center} |
|
35 |
\begin{tabular}{lcl} |
|
402
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
36 |
$der\, c\, (\ZERO)$ & $\dn$ & $\ZERO$ \\ |
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
37 |
$der\, c\, (\ONE)$ & $\dn$ & $\ZERO$ \\ |
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
38 |
$der\, c\, (d)$ & $\dn$ & if $c = d$ then $\ONE$ else $\ZERO$\\ |
20 | 39 |
$der\, c\, (r_1 + r_2)$ & $\dn$ & $(der\, c\, r_1) + (der\, c\, r_2)$ \\ |
40 |
$der\, c\, (r_1 \cdot r_2)$ & $\dn$ & if $nullable(r_1)$\\ |
|
41 |
& & then $((der\, c\, r_1) \cdot r_2) + (der\, c\, r_2)$\\ |
|
42 |
& & else $(der\, c\, r_1) \cdot r_2$\\ |
|
43 |
$der\, c\, (r^*)$ & $\dn$ & $(der\, c\, r) \cdot (r^*)$\\ |
|
44 |
\end{tabular} |
|
45 |
\end{center} |
|
46 |
||
47 |
\noindent |
|
48 |
With our definition of regular expressions comes an induction principle. Given a property $P$ over |
|
49 |
regular expressions. We can establish that $\forall r.\; P(r)$ holds, provided we can show the following: |
|
50 |
||
51 |
\begin{enumerate} |
|
402
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
52 |
\item $P(\ZERO)$, $P(\ONE)$ and $P(c)$ all hold, |
20 | 53 |
\item $P(r_1 + r_2)$ holds under the induction hypotheses that |
54 |
$P(r_1)$ and $P(r_2)$ hold, |
|
55 |
\item $P(r_1 \cdot r_2)$ holds under the induction hypotheses that |
|
56 |
$P(r_1)$ and $P(r_2)$ hold, and |
|
57 |
\item $P(r^*)$ holds under the induction hypothesis that $P(r)$ holds. |
|
58 |
\end{enumerate} |
|
59 |
||
60 |
\noindent |
|
61 |
Let us try out an induction proof. Recall the definition |
|
62 |
||
63 |
\begin{center} |
|
64 |
$Der\, c\, A \dn \{ s\;\mid\; c\!::\!s \in A\}$ |
|
65 |
\end{center} |
|
66 |
||
67 |
\noindent |
|
68 |
whereby $A$ is a set of strings. We like to prove |
|
69 |
||
70 |
\begin{center} |
|
71 |
\begin{tabular}{l} |
|
72 |
$P(r) \dn $ \hspace{4mm} $L(der\,c\,r) = Der\,c\,(L(r))$ |
|
73 |
\end{tabular} |
|
74 |
\end{center} |
|
75 |
||
76 |
\noindent |
|
77 |
by induction over the regular expression $r$. |
|
78 |
||
79 |
||
80 |
\newpage |
|
81 |
\noindent |
|
82 |
{\bf Proof} |
|
83 |
||
84 |
\noindent |
|
402
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
85 |
According to 1.~above we need to prove $P(\ZERO)$, $P(\ONE)$ and $P(d)$. Lets do this in turn. |
20 | 86 |
|
87 |
\begin{itemize} |
|
402
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
88 |
\item First Case: $P(\ZERO)$ is $L(der\,c\,\ZERO) = Der\,c\,(L(\ZERO))$ (a). We have $der\,c\,\ZERO = \ZERO$ |
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
89 |
and $L(\ZERO) = \ZERO$. We also have $Der\,c\,\ZERO = \ZERO$. Hence we have $\ZERO = \ZERO$ in (a). |
20 | 90 |
|
402
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
91 |
\item Second Case: $P(\ONE)$ is $L(der\,c\,\ONE) = Der\,c\,(L(\ONE))$ (b). We have $der\,c\,\ONE = \ZERO$, |
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
92 |
$L(\ZERO) = \ZERO$ and $L(\ONE) = \{\texttt{""}\}$. We also have $Der\,c\,\{\texttt{""}\} = \ZERO$. Hence we have |
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
93 |
$\ZERO = \ZERO$ in (b). |
20 | 94 |
|
95 |
\item Third Case: $P(d)$ is $L(der\,c\,d) = Der\,c\,(L(d))$ (c). We need to treat the cases $d = c$ and $d \not= c$. |
|
96 |
||
402
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
97 |
$d = c$: We have $der\,c\,c = \ONE$ and $L(\ONE) = \{\texttt{""}\}$. |
20 | 98 |
We also have $L(c) = \{\texttt{"}c\texttt{"}\}$ and $Der\,c\,\{\texttt{"}c\texttt{"}\} = \{\texttt{""}\}$. Hence we have |
99 |
$\{\texttt{""}\} = \{\texttt{""}\}$ in (c). |
|
100 |
||
402
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
101 |
$d \not=c$: We have $der\,c\,d = \ZERO$. |
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
102 |
We also have $Der\,c\,\{\texttt{"}d\texttt{"}\} = \ZERO$. Hence we have |
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
103 |
$\ZERO = \ZERO$ in (c). |
34 | 104 |
\end{itemize} |
20 | 105 |
|
34 | 106 |
\noindent |
107 |
These were the easy base cases. Now come the inductive cases. |
|
108 |
||
109 |
\begin{itemize} |
|
20 | 110 |
\item Fourth Case: $P(r_1 + r_2)$ is $L(der\,c\,(r_1 + r_2)) = Der\,c\,(L(r_1 + r_2))$ (d). This is what we have to show. |
111 |
We can assume already: |
|
112 |
||
113 |
\begin{center} |
|
114 |
\begin{tabular}{ll} |
|
115 |
$P(r_1)$: & $L(der\,c\,r_1) = Der\,c\,(L(r_1))$ (I)\\ |
|
116 |
$P(r_2)$: & $L(der\,c\,r_2) = Der\,c\,(L(r_2))$ (II) |
|
117 |
\end{tabular} |
|
118 |
\end{center} |
|
119 |
||
120 |
We have that $der\,c\,(r_1 + r_2) = (der\,c\,r_1) + (der\,c\,r_2)$ and also $L((der\,c\,r_1) + (der\,c\,r_2)) = L(der\,c\,r_1) \cup L(der\,c\,r_2)$. |
|
121 |
By (I) and (II) we know that the left-hand side is $Der\,c\,(L(r_1)) \cup Der\,c\,(L(r_2))$. You need to ponder a bit, but you should see |
|
122 |
that |
|
123 |
||
124 |
\begin{center} |
|
125 |
$Der\,c(A \cup B) = (Der\,c\,A) \cup (Der\,c\,B)$ |
|
126 |
\end{center} |
|
127 |
||
128 |
holds for every set of strings $A$ and $B$. That means the right-hand side of (d) is also $Der\,c\,(L(r_1)) \cup Der\,c\,(L(r_2))$, |
|
129 |
because $L(r_1 + r_2) = L(r_1) \cup L(r_2)$. And we are done with the fourth case. |
|
130 |
||
21 | 131 |
\item Fifth Case: $P(r_1 \cdot r_2)$ is $L(der\,c\,(r_1 \cdot r_2)) = Der\,c\,(L(r_1 \cdot r_2))$ (e). We can assume already: |
132 |
||
133 |
\begin{center} |
|
134 |
\begin{tabular}{ll} |
|
135 |
$P(r_1)$: & $L(der\,c\,r_1) = Der\,c\,(L(r_1))$ (I)\\ |
|
136 |
$P(r_2)$: & $L(der\,c\,r_2) = Der\,c\,(L(r_2))$ (II) |
|
137 |
\end{tabular} |
|
138 |
\end{center} |
|
139 |
||
140 |
Let us first consider the case where $nullable(r_1)$ holds. Then |
|
141 |
||
142 |
\[ |
|
143 |
der\,c\,(r_1 \cdot r_2) = ((der\,c\,r_1) \cdot r_2) + (der\,c\,r_2). |
|
144 |
\] |
|
145 |
||
146 |
The corresponding language of the right-hand side is |
|
147 |
||
148 |
\[ |
|
149 |
(L(der\,c\,r_1) \,@\, L(r_2)) \cup L(der\,c\,r_2). |
|
150 |
\] |
|
151 |
||
152 |
By the induction hypotheses (I) and (II), this is equal to |
|
153 |
||
154 |
\[ |
|
155 |
(Der\,c\,(L(r_1)) \,@\, L(r_2)) \cup (Der\,c\,(L(r_2)).\;\;(**) |
|
156 |
\] |
|
157 |
||
158 |
We also know that $L(r_1 \cdot r_2) = L(r_1) \,@\,L(r_2)$. We have to know what |
|
159 |
$Der\,c\,(L(r_1) \,@\,L(r_2))$ is. |
|
160 |
||
161 |
Let us analyse what |
|
162 |
$Der\,c\,(A \,@\, B)$ is for arbitrary sets of strings $A$ and $B$. If $A$ does \emph{not} |
|
163 |
contain the empty string, then every string in $A\,@\,B$ is of the form $s_1 \,@\, s_2$ where |
|
164 |
$s_1 \in A$ and $s_2 \in B$. So if $s_1$ starts with $c$ then we just have to remove it. Consequently, |
|
165 |
$Der\,c\,(A \,@\, B) = (Der\,c\,(A)) \,@\, B$. This case does not apply here though, because we already |
|
166 |
proved that if $r_1$ is nullable, then $L(r_1)$ contains the empty string. In this case, every string |
|
167 |
in $A\,@\,B$ is either of the form $s_1 \,@\, s_2$, with $s_1 \in A$ and $s_2 \in B$, or |
|
168 |
$s_3$ with $s_3 \in B$. This means $Der\,c\,(A \,@\, B) = ((Der\,c\,(A)) \,@\, B) \cup Der\,c\,B$. |
|
169 |
But this proves that (**) is $Der\,c\,(L(r_1) \,@\, L(r_2))$. |
|
170 |
||
171 |
Similarly in the case where $r_1$ is \emph{not} nullable. |
|
20 | 172 |
|
34 | 173 |
\item Sixth Case: $P(r^*)$ is $L(der\,c\,(r^*)) = Der\,c\,L(r^*)$. We can assume already: |
174 |
||
175 |
\begin{center} |
|
176 |
\begin{tabular}{ll} |
|
177 |
$P(r)$: & $L(der\,c\,r) = Der\,c\,(L(r))$ (I) |
|
178 |
\end{tabular} |
|
179 |
\end{center} |
|
180 |
||
181 |
We have $der\,c\,(r^*) = der\,c\,r\cdot r^*$. Which means $L(der\,c\,(r^*)) = L(der\,c\,r\cdot r^*)$ and |
|
182 |
further $L(der\,c\,r) \,@\, L(r^*)$. By induction hypothesis (I) we know that is equal to |
|
183 |
$(Der\,c\,L(r)) \,@\, L(r^*)$. (*) |
|
184 |
||
20 | 185 |
\end{itemize} |
186 |
||
34 | 187 |
Let us now analyse $Der\,c\,L(r^*)$, which is equal to $Der\,c\,((L(r))^*)$. Now $(L(r))^*$ is defined |
388
66f66f1710ed
added
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
188 |
as $\bigcup_{n \ge 0} L(r)^n$. We can write this as $L(r)^0 \cup \bigcup_{n \ge 1} L(r)^n$, where we just |
34 | 189 |
separated the first union and then let the ``big-union'' start from $1$. Form this we can already infer |
190 |
||
191 |
\begin{center} |
|
388
66f66f1710ed
added
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
192 |
$Der\,c\,(L(r^*)) = Der\,c\,(L(r)^0 \cup \bigcup_{n \ge 1} L(r)^n) = (Der\,c\,L(r)^0) \cup Der\,c\,(\bigcup_{n \ge 1} L(r)^n)$ |
34 | 193 |
\end{center} |
194 |
||
402
55f097ab96c9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
388
diff
changeset
|
195 |
The first union ``disappears'' since $Der\,c\,(L(r)^0) = \ZERO$. |
34 | 196 |
|
197 |
||
20 | 198 |
\end{document} |
199 |
||
200 |
%%% Local Variables: |
|
201 |
%%% mode: latex |
|
202 |
%%% TeX-master: t |
|
203 |
%%% End: |