author | Christian Urban <christian dot urban at kcl dot ac dot uk> |
Mon, 02 Dec 2013 23:21:22 +0000 | |
changeset 222 | b712519b41d3 |
parent 146 | 9da175d5eb63 |
child 258 | 1e4da6d2490c |
permissions | -rw-r--r-- |
23 | 1 |
\documentclass{article} |
2 |
\usepackage{charter} |
|
3 |
\usepackage{hyperref} |
|
4 |
\usepackage{amssymb} |
|
5 |
\usepackage{amsmath} |
|
6 |
||
7 |
\begin{document} |
|
8 |
||
9 |
\section*{Homework 3} |
|
10 |
||
11 |
\begin{enumerate} |
|
132
04264d0c43bb
added
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
12 |
\item What is a regular language? |
04264d0c43bb
added
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
13 |
|
23 | 14 |
\item Assume you have an alphabet consisting of the letters $a$, $b$ and $c$ only. |
146
9da175d5eb63
added new hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
132
diff
changeset
|
15 |
(1) Find a regular expression that recognises the two strings $ab$ and $ac$. (2) |
23 | 16 |
Find a regular expression that matches all strings \emph{except} these two strings. |
17 |
Note, you can only use regular expressions of the form |
|
18 |
\begin{center} |
|
19 |
$r ::= \varnothing \;|\; \epsilon \;|\; c \;|\; r_1 + r_2 \;|\; r_1 \cdot r_2 \;|\; r^*$ |
|
20 |
\end{center} |
|
21 |
||
22 |
\item Define the function $zeroable$ which takes a regular expression as argument |
|
132
04264d0c43bb
added
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
23 |
and returns a boolean. The |
30 | 24 |
function should satisfy the following property: |
23 | 25 |
\begin{center} |
26 |
$zeroable(r)$ \;if and only if\; $L(r) = \varnothing$ |
|
27 |
\end{center} |
|
28 |
||
27 | 29 |
\item Define the tokens and regular expressions for a language |
30 |
consisting of numbers, left-parenthesis (, right-parenthesis ), |
|
31 |
identifiers and the operations $+$, $-$ and $*$. Can the following strings |
|
32 |
in this language be lexed? |
|
33 |
||
34 |
\begin{itemize} |
|
35 |
\item \texttt{"}$(a + 3) * b$\texttt{"} |
|
36 |
\item \texttt{"}$)()++ -33$\texttt{"} |
|
37 |
\item \texttt{"}$(a / 3) * 3$\texttt{"} |
|
38 |
\end{itemize} |
|
31 | 39 |
|
40 |
||
41 |
In case they can, can you give the corresponding token sequences. |
|
23 | 42 |
\end{enumerate} |
43 |
||
31 | 44 |
|
27 | 45 |
|
23 | 46 |
\end{document} |
47 |
||
48 |
%%% Local Variables: |
|
49 |
%%% mode: latex |
|
50 |
%%% TeX-master: t |
|
51 |
%%% End: |