44
|
1 |
\documentclass[dvipsnames,14pt,t]{beamer}
|
|
2 |
\usepackage{beamerthemeplainculight}
|
|
3 |
\usepackage[T1]{fontenc}
|
|
4 |
\usepackage[latin1]{inputenc}
|
|
5 |
\usepackage{mathpartir}
|
|
6 |
\usepackage[absolute,overlay]{textpos}
|
|
7 |
\usepackage{ifthen}
|
|
8 |
\usepackage{tikz}
|
|
9 |
\usepackage{pgf}
|
|
10 |
\usepackage{calc}
|
|
11 |
\usepackage{ulem}
|
|
12 |
\usepackage{courier}
|
|
13 |
\usepackage{listings}
|
|
14 |
\renewcommand{\uline}[1]{#1}
|
|
15 |
\usetikzlibrary{arrows}
|
|
16 |
\usetikzlibrary{automata}
|
|
17 |
\usetikzlibrary{shapes}
|
|
18 |
\usetikzlibrary{shadows}
|
|
19 |
\usetikzlibrary{positioning}
|
|
20 |
\usetikzlibrary{calc}
|
|
21 |
\usepackage{graphicx}
|
|
22 |
|
|
23 |
\definecolor{javared}{rgb}{0.6,0,0} % for strings
|
|
24 |
\definecolor{javagreen}{rgb}{0.25,0.5,0.35} % comments
|
|
25 |
\definecolor{javapurple}{rgb}{0.5,0,0.35} % keywords
|
|
26 |
\definecolor{javadocblue}{rgb}{0.25,0.35,0.75} % javadoc
|
|
27 |
|
|
28 |
\lstset{language=Java,
|
|
29 |
basicstyle=\ttfamily,
|
|
30 |
keywordstyle=\color{javapurple}\bfseries,
|
|
31 |
stringstyle=\color{javagreen},
|
|
32 |
commentstyle=\color{javagreen},
|
|
33 |
morecomment=[s][\color{javadocblue}]{/**}{*/},
|
|
34 |
numbers=left,
|
|
35 |
numberstyle=\tiny\color{black},
|
|
36 |
stepnumber=1,
|
|
37 |
numbersep=10pt,
|
|
38 |
tabsize=2,
|
|
39 |
showspaces=false,
|
|
40 |
showstringspaces=false}
|
|
41 |
|
|
42 |
\lstdefinelanguage{scala}{
|
|
43 |
morekeywords={abstract,case,catch,class,def,%
|
|
44 |
do,else,extends,false,final,finally,%
|
|
45 |
for,if,implicit,import,match,mixin,%
|
|
46 |
new,null,object,override,package,%
|
|
47 |
private,protected,requires,return,sealed,%
|
|
48 |
super,this,throw,trait,true,try,%
|
|
49 |
type,val,var,while,with,yield},
|
|
50 |
otherkeywords={=>,<-,<\%,<:,>:,\#,@},
|
|
51 |
sensitive=true,
|
|
52 |
morecomment=[l]{//},
|
|
53 |
morecomment=[n]{/*}{*/},
|
|
54 |
morestring=[b]",
|
|
55 |
morestring=[b]',
|
|
56 |
morestring=[b]"""
|
|
57 |
}
|
|
58 |
|
|
59 |
\lstset{language=Scala,
|
|
60 |
basicstyle=\ttfamily,
|
|
61 |
keywordstyle=\color{javapurple}\bfseries,
|
|
62 |
stringstyle=\color{javagreen},
|
|
63 |
commentstyle=\color{javagreen},
|
|
64 |
morecomment=[s][\color{javadocblue}]{/**}{*/},
|
|
65 |
numbers=left,
|
|
66 |
numberstyle=\tiny\color{black},
|
|
67 |
stepnumber=1,
|
|
68 |
numbersep=10pt,
|
|
69 |
tabsize=2,
|
|
70 |
showspaces=false,
|
|
71 |
showstringspaces=false}
|
|
72 |
|
|
73 |
% beamer stuff
|
|
74 |
\renewcommand{\slidecaption}{AFL 05, King's College London, 24.~October 2012}
|
|
75 |
\newcommand{\bl}[1]{\textcolor{blue}{#1}}
|
|
76 |
\newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% for definitions
|
|
77 |
|
|
78 |
\begin{document}
|
|
79 |
|
|
80 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
81 |
\mode<presentation>{
|
|
82 |
\begin{frame}<1>[t]
|
|
83 |
\frametitle{%
|
|
84 |
\begin{tabular}{@ {}c@ {}}
|
|
85 |
\\[-3mm]
|
|
86 |
\LARGE Automata and \\[-2mm]
|
|
87 |
\LARGE Formal Languages (5)\\[3mm]
|
|
88 |
\end{tabular}}
|
|
89 |
|
|
90 |
\normalsize
|
|
91 |
\begin{center}
|
|
92 |
\begin{tabular}{ll}
|
|
93 |
Email: & christian.urban at kcl.ac.uk\\
|
|
94 |
Of$\!$fice: & S1.27 (1st floor Strand Building)\\
|
|
95 |
Slides: & KEATS (also home work is there)\\
|
|
96 |
\end{tabular}
|
|
97 |
\end{center}
|
|
98 |
|
|
99 |
|
|
100 |
\end{frame}}
|
|
101 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
102 |
|
|
103 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
104 |
\mode<presentation>{
|
|
105 |
\begin{frame}[t]
|
|
106 |
\frametitle{\begin{tabular}{c}Deterministic Finite Automata\end{tabular}}
|
|
107 |
|
|
108 |
A DFA \bl{$A(Q, q_0, F, \delta)$} consists of:
|
|
109 |
|
|
110 |
\begin{itemize}
|
|
111 |
\item a finite set of states \bl{$Q$}
|
|
112 |
\item one of these states is the start state \bl{$q_0$}
|
|
113 |
\item some states are accepting states \bl{$F$}
|
47
|
114 |
\item a transition function \bl{$\delta$}
|
44
|
115 |
\end{itemize}\pause
|
|
116 |
|
|
117 |
\onslide<2->{
|
|
118 |
\begin{center}
|
|
119 |
\begin{tabular}{l}
|
|
120 |
\bl{$\hat{\delta}(q, \texttt{""}) = q$}\\
|
|
121 |
\bl{$\hat{\delta}(q, c\!::\!s) = \hat{\delta}(\delta(q, c), s)$}
|
|
122 |
\end{tabular}
|
|
123 |
\end{center}}
|
|
124 |
|
|
125 |
\only<3,4>{
|
|
126 |
\begin{center}
|
|
127 |
\begin{tikzpicture}[scale=2, line width=0.5mm]
|
|
128 |
\node[state, initial] (q02) at ( 0,1) {$q_{0}$};
|
|
129 |
\node[state] (q13) at ( 1,1) {$q_{1}$};
|
|
130 |
\node[state, accepting] (q4) at ( 2,1) {$q_2$};
|
|
131 |
\path[->] (q02) edge[bend left] node[above] {$a$} (q13)
|
|
132 |
(q13) edge[bend left] node[below] {$b$} (q02)
|
|
133 |
(q13) edge node[above] {$a$} (q4)
|
|
134 |
(q02) edge [loop below] node {$b$} ()
|
|
135 |
(q4) edge [loop right] node {$a, b$} ()
|
|
136 |
;
|
|
137 |
\end{tikzpicture}
|
|
138 |
\end{center}}%
|
|
139 |
%
|
|
140 |
\only<5>{
|
|
141 |
\begin{center}
|
|
142 |
\bl{$L(A) \dn \{ s \;|\; \hat{\delta}(q_0, s) \in F\}$}
|
|
143 |
\end{center}}
|
|
144 |
|
|
145 |
\end{frame}}
|
|
146 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
147 |
|
|
148 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
149 |
\mode<presentation>{
|
|
150 |
\begin{frame}[t]
|
|
151 |
\frametitle{\begin{tabular}{c}Non-Deterministic\\[-1mm] Finite Automata\end{tabular}}
|
|
152 |
|
|
153 |
An NFA \bl{$A(Q, q_0, F, \delta)$} consists again of:
|
|
154 |
|
|
155 |
\begin{itemize}
|
|
156 |
\item a finite set of states
|
|
157 |
\item one of these states is the start state
|
|
158 |
\item some states are accepting states
|
47
|
159 |
\item a transition \alert{relation}\medskip
|
44
|
160 |
\end{itemize}
|
|
161 |
|
|
162 |
|
|
163 |
\begin{center}
|
|
164 |
\begin{tabular}{c}
|
|
165 |
\bl{(q$_1$, a) $\rightarrow$ q$_2$}\\
|
|
166 |
\bl{(q$_1$, a) $\rightarrow$ q$_3$}\\
|
|
167 |
\end{tabular}
|
|
168 |
\hspace{10mm}
|
|
169 |
\begin{tabular}{c}
|
|
170 |
\bl{(q$_1$, $\epsilon$) $\rightarrow$ q$_2$}\\
|
|
171 |
\end{tabular}
|
|
172 |
\end{center}\pause\medskip
|
|
173 |
|
|
174 |
A string \bl{s} is accepted by an NFA, if there is a ``lucky'' sequence to an accepting state.
|
|
175 |
|
|
176 |
\end{frame}}
|
|
177 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
178 |
|
|
179 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
180 |
\mode<presentation>{
|
|
181 |
\begin{frame}[c]
|
|
182 |
\frametitle{\begin{tabular}{c}Last Week\end{tabular}}
|
|
183 |
|
|
184 |
Last week I showed you\bigskip
|
|
185 |
|
|
186 |
\begin{itemize}
|
|
187 |
\item an algorithm for automata minimisation
|
|
188 |
|
|
189 |
\item an algorithm for transforming a regular expression into an NFA
|
|
190 |
|
|
191 |
\item an algorithm for transforming an NFA into a DFA (subset construction)
|
|
192 |
|
|
193 |
\end{itemize}
|
|
194 |
|
|
195 |
\end{frame}}
|
|
196 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
197 |
|
|
198 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
199 |
\mode<presentation>{
|
|
200 |
\begin{frame}[c]
|
|
201 |
\frametitle{\begin{tabular}{c}This Week\end{tabular}}
|
|
202 |
|
|
203 |
Go over the algorithms again, but with two new things and \ldots\medskip
|
|
204 |
|
|
205 |
\begin{itemize}
|
|
206 |
\item with the example: what is the regular expression that accepts every string, except those ending
|
|
207 |
in \bl{aa}?\medskip
|
|
208 |
|
|
209 |
\item Go over the proof for \bl{$L(rev(r)) = Rev(L(r))$}.\medskip
|
|
210 |
|
|
211 |
\item Anything else so far.
|
|
212 |
\end{itemize}
|
|
213 |
|
|
214 |
\end{frame}}
|
|
215 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
216 |
|
|
217 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
218 |
\mode<presentation>{
|
|
219 |
\begin{frame}[c]
|
|
220 |
\frametitle{\begin{tabular}{c}Proofs By Induction\end{tabular}}
|
|
221 |
|
|
222 |
\begin{itemize}
|
|
223 |
\item \bl{$P$} holds for \bl{$\varnothing$}, \bl{$\epsilon$} and \bl{c}\bigskip
|
|
224 |
\item \bl{$P$} holds for \bl{r$_1$ + r$_2$} under the assumption that \bl{$P$} already
|
|
225 |
holds for \bl{r$_1$} and \bl{r$_2$}.\bigskip
|
|
226 |
\item \bl{$P$} holds for \bl{r$_1$ $\cdot$ r$_2$} under the assumption that \bl{$P$} already
|
|
227 |
holds for \bl{r$_1$} and \bl{r$_2$}.
|
|
228 |
\item \bl{$P$} holds for \bl{r$^*$} under the assumption that \bl{$P$} already
|
|
229 |
holds for \bl{r}.
|
|
230 |
\end{itemize}
|
|
231 |
|
|
232 |
\begin{center}
|
|
233 |
\bl{$P(r):\;\;L(rev(r)) = Rev(L(r))$}
|
|
234 |
\end{center}
|
|
235 |
|
|
236 |
\end{frame}}
|
|
237 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
238 |
|
|
239 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
240 |
\mode<presentation>{
|
|
241 |
\begin{frame}[t]
|
|
242 |
|
|
243 |
What is the regular expression that accepts every string, except those ending
|
|
244 |
in \bl{aa}?\pause\bigskip
|
|
245 |
|
|
246 |
\begin{center}
|
|
247 |
\begin{tabular}{l}
|
|
248 |
\bl{(a + b)$^*$ba}\\
|
|
249 |
\bl{(a + b)$^*$ab}\\
|
|
250 |
\bl{(a + b)$^*$bb}\\\pause
|
|
251 |
\bl{a}\\
|
|
252 |
\bl{\texttt{""}}
|
|
253 |
\end{tabular}
|
|
254 |
\end{center}\pause
|
|
255 |
|
|
256 |
What are the strings to be avoided?\pause\medskip
|
|
257 |
|
|
258 |
\begin{center}
|
|
259 |
\bl{(a + b)$^*$aa}
|
|
260 |
\end{center}
|
|
261 |
|
|
262 |
\end{frame}}
|
|
263 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
264 |
|
|
265 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
266 |
\mode<presentation>{
|
|
267 |
\begin{frame}[t]
|
|
268 |
|
|
269 |
An NFA for \bl{(a + b)$^*$aa}
|
|
270 |
|
|
271 |
\begin{center}
|
|
272 |
\begin{tikzpicture}[scale=2, line width=0.5mm]
|
|
273 |
\node[state, initial] (q0) at ( 0,1) {$q_0$};
|
|
274 |
\node[state] (q1) at ( 1,1) {$q_1$};
|
|
275 |
\node[state, accepting] (q2) at ( 2,1) {$q_2$};
|
|
276 |
\path[->] (q0) edge node[above] {$a$} (q1)
|
|
277 |
(q1) edge node[above] {$a$} (q2)
|
|
278 |
(q0) edge [loop below] node {$a$} ()
|
|
279 |
(q0) edge [loop above] node {$b$} ()
|
|
280 |
;
|
|
281 |
\end{tikzpicture}
|
|
282 |
\end{center}\pause
|
|
283 |
|
|
284 |
Minimisation for DFAs\\
|
|
285 |
Subset Construction for NFAs
|
|
286 |
|
|
287 |
\end{frame}}
|
|
288 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
289 |
|
|
290 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
291 |
\mode<presentation>{
|
|
292 |
\begin{frame}[c]
|
|
293 |
\frametitle{\begin{tabular}{c}DFA Minimisation\end{tabular}}
|
|
294 |
|
|
295 |
|
|
296 |
\begin{enumerate}
|
|
297 |
\item Take all pairs \bl{(q, p)} with \bl{q $\not=$ p}
|
|
298 |
\item Mark all pairs that accepting and non-accepting states
|
|
299 |
\item For all unmarked pairs \bl{(q, p)} and all characters \bl{c} tests wether
|
|
300 |
\begin{center}
|
|
301 |
\bl{($\delta$(q,c), $\delta$(p,c))}
|
|
302 |
\end{center}
|
|
303 |
are marked. If yes, then also mark \bl{(q, p)}.
|
|
304 |
\item Repeat last step until nothing changed.
|
|
305 |
\item All unmarked pairs can be merged.
|
|
306 |
\end{enumerate}
|
|
307 |
|
|
308 |
\end{frame}}
|
|
309 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
310 |
|
|
311 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
312 |
\mode<presentation>{
|
|
313 |
\begin{frame}[c]
|
|
314 |
|
|
315 |
Minimal DFA \only<1>{\bl{(a + b)$^*$aa}}\only<2->{\alert{not} \bl{(a + b)$^*$aa}}
|
|
316 |
|
|
317 |
\begin{center}
|
|
318 |
\begin{tikzpicture}[scale=2, line width=0.5mm]
|
|
319 |
\only<1>{\node[state, initial] (q0) at ( 0,1) {$q_0$};}
|
|
320 |
\only<2->{\node[state, initial,accepting] (q0) at ( 0,1) {$q_0$};}
|
|
321 |
\only<1>{\node[state] (q1) at ( 1,1) {$q_1$};}
|
|
322 |
\only<2->{\node[state,accepting] (q1) at ( 1,1) {$q_1$};}
|
|
323 |
\only<1>{\node[state, accepting] (q2) at ( 2,1) {$q_2$};}
|
|
324 |
\only<2->{\node[state] (q2) at ( 2,1) {$q_2$};}
|
|
325 |
\path[->] (q0) edge[bend left] node[above] {$a$} (q1)
|
|
326 |
(q1) edge[bend left] node[above] {$b$} (q0)
|
|
327 |
(q2) edge[bend left=50] node[below] {$b$} (q0)
|
|
328 |
(q1) edge node[above] {$a$} (q2)
|
|
329 |
(q2) edge [loop right] node {$a$} ()
|
|
330 |
(q0) edge [loop below] node {$b$} ()
|
|
331 |
;
|
|
332 |
\end{tikzpicture}
|
|
333 |
\end{center}
|
|
334 |
|
|
335 |
\onslide<3>{How to get from a DFA to a regular expression?}
|
|
336 |
|
|
337 |
\end{frame}}
|
|
338 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
339 |
|
|
340 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
341 |
\mode<presentation>{
|
|
342 |
\begin{frame}[c]
|
|
343 |
|
|
344 |
\begin{center}
|
|
345 |
\begin{tikzpicture}[scale=2, line width=0.5mm]
|
|
346 |
\only<1->{\node[state, initial] (q0) at ( 0,1) {$q_0$};}
|
|
347 |
\only<1->{\node[state] (q1) at ( 1,1) {$q_1$};}
|
|
348 |
\only<1->{\node[state] (q2) at ( 2,1) {$q_2$};}
|
|
349 |
\path[->] (q0) edge[bend left] node[above] {$a$} (q1)
|
|
350 |
(q1) edge[bend left] node[above] {$b$} (q0)
|
|
351 |
(q2) edge[bend left=50] node[below] {$b$} (q0)
|
|
352 |
(q1) edge node[above] {$a$} (q2)
|
|
353 |
(q2) edge [loop right] node {$a$} ()
|
|
354 |
(q0) edge [loop below] node {$b$} ()
|
|
355 |
;
|
|
356 |
\end{tikzpicture}
|
|
357 |
\end{center}\pause\bigskip
|
|
358 |
|
|
359 |
\onslide<2->{
|
|
360 |
\begin{center}
|
|
361 |
\begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
|
|
362 |
\bl{$q_0$} & \bl{$=$} & \bl{$2\, q_0 + 3 \,q_1 + 4\, q_2$}\\
|
|
363 |
\bl{$q_1$} & \bl{$=$} & \bl{$2 \,q_0 + 3\, q_1 + 1\, q_2$}\\
|
|
364 |
\bl{$q_2$} & \bl{$=$} & \bl{$1\, q_0 + 5\, q_1 + 2\, q_2$}\\
|
|
365 |
|
|
366 |
\end{tabular}
|
|
367 |
\end{center}
|
|
368 |
}
|
|
369 |
|
|
370 |
\end{frame}}
|
|
371 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
372 |
|
|
373 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
374 |
\mode<presentation>{
|
|
375 |
\begin{frame}[c]
|
|
376 |
|
|
377 |
\begin{center}
|
|
378 |
\begin{tikzpicture}[scale=2, line width=0.5mm]
|
|
379 |
\only<1->{\node[state, initial] (q0) at ( 0,1) {$q_0$};}
|
|
380 |
\only<1->{\node[state] (q1) at ( 1,1) {$q_1$};}
|
|
381 |
\only<1->{\node[state] (q2) at ( 2,1) {$q_2$};}
|
|
382 |
\path[->] (q0) edge[bend left] node[above] {$a$} (q1)
|
|
383 |
(q1) edge[bend left] node[above] {$b$} (q0)
|
|
384 |
(q2) edge[bend left=50] node[below] {$b$} (q0)
|
|
385 |
(q1) edge node[above] {$a$} (q2)
|
|
386 |
(q2) edge [loop right] node {$a$} ()
|
|
387 |
(q0) edge [loop below] node {$b$} ()
|
|
388 |
;
|
|
389 |
\end{tikzpicture}
|
|
390 |
\end{center}\bigskip
|
|
391 |
|
|
392 |
\onslide<2->{
|
|
393 |
\begin{center}
|
|
394 |
\begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
|
|
395 |
\bl{$q_0$} & \bl{$=$} & \bl{$\epsilon + q_0\,b + q_1\,b + q_2\,b$}\\
|
|
396 |
\bl{$q_1$} & \bl{$=$} & \bl{$q_0\,a$}\\
|
|
397 |
\bl{$q_2$} & \bl{$=$} & \bl{$q_1\,a + q_2\,a$}\\
|
|
398 |
|
|
399 |
\end{tabular}
|
|
400 |
\end{center}
|
|
401 |
}
|
|
402 |
|
|
403 |
\onslide<3->{
|
|
404 |
Arden's Lemma:
|
|
405 |
\begin{center}
|
|
406 |
If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$}
|
|
407 |
\end{center}
|
|
408 |
}
|
|
409 |
|
|
410 |
\end{frame}}
|
|
411 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
412 |
|
46
|
413 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
414 |
\mode<presentation>{
|
|
415 |
\begin{frame}[c]
|
|
416 |
\frametitle{\begin{tabular}{c}Algorithms on Automata\end{tabular}}
|
|
417 |
|
|
418 |
|
|
419 |
\begin{itemize}
|
|
420 |
\item Reg $\rightarrow$ NFA: Thompson-McNaughton-Yamada method\medskip
|
|
421 |
\item NFA $\rightarrow$ DFA: Subset Construction\medskip
|
|
422 |
\item DFA $\rightarrow$ Reg: Brzozowski's Algebraic Method\medskip
|
|
423 |
\item DFA minimisation: Hopcrofts Algorithm\medskip
|
|
424 |
\item complement DFA
|
|
425 |
\end{itemize}
|
|
426 |
|
|
427 |
\end{frame}}
|
|
428 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
47
|
429 |
\newcommand{\qq}{\mbox{\texttt{"}}}
|
|
430 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
431 |
\mode<presentation>{
|
|
432 |
\begin{frame}[c]
|
|
433 |
\frametitle{\begin{tabular}{c}Grammars\end{tabular}}
|
|
434 |
|
|
435 |
\begin{center}
|
|
436 |
\bl{\begin{tabular}{lcl}
|
|
437 |
$E$ & $\rightarrow$ & $F + (F \cdot \qq*\qq \cdot F) + (F \cdot \qq\backslash\qq \cdot F)$\\
|
|
438 |
$F$ & $\rightarrow$ & $T + (T \cdot \qq\texttt{+}\qq \cdot T) + (T \cdot \qq\texttt{-}\qq \cdot T)$\\
|
|
439 |
$T$ & $\rightarrow$ & $num + (\qq\texttt{(}\qq \cdot E \cdot \qq\texttt{)}\qq)$\\
|
|
440 |
\end{tabular}}
|
|
441 |
\end{center}
|
|
442 |
|
|
443 |
\bl{$E$}, \bl{$F$} and \bl{$T$} are non-terminals\\
|
|
444 |
\bl{$E$} is start symbol\\
|
|
445 |
\bl{$num$}, \bl{(}, \bl{)}, \bl{+} \ldots are terminals\bigskip\\
|
|
446 |
|
|
447 |
|
|
448 |
\bl{\texttt{(2*3)+(3+4)}}
|
|
449 |
|
|
450 |
\end{frame}}
|
|
451 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
452 |
|
|
453 |
|
|
454 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
455 |
\mode<presentation>{
|
|
456 |
\begin{frame}[c]
|
|
457 |
|
|
458 |
\begin{center}
|
|
459 |
\bl{\begin{tabular}{lcl}
|
|
460 |
$E$ & $\rightarrow$ & $F + (F \cdot \qq*\qq \cdot F) + (F \cdot \qq\backslash\qq \cdot F)$\\
|
|
461 |
$F$ & $\rightarrow$ & $T + (T \cdot \qq\texttt{+}\qq \cdot T) + (T \cdot \qq\texttt{-}\qq \cdot T)$\\
|
|
462 |
$T$ & $\rightarrow$ & $num + (\qq\texttt{(}\qq \cdot E \cdot \qq\texttt{)}\qq)$\\
|
|
463 |
\end{tabular}}
|
|
464 |
\end{center}
|
|
465 |
|
|
466 |
\begin{center}
|
|
467 |
\begin{tikzpicture}[level distance=8mm, blue]
|
|
468 |
\node {E}
|
|
469 |
child {node {F}
|
|
470 |
child {node {T}
|
|
471 |
child {node {\qq(\qq\,E\,\qq)\qq}
|
|
472 |
child {node{F \qq*\qq{} F}
|
|
473 |
child {node {T} child {node {2}}}
|
|
474 |
child {node {T} child {node {3}}}
|
|
475 |
}
|
|
476 |
}
|
|
477 |
}
|
|
478 |
child {node {\qq+\qq}}
|
|
479 |
child {node {T}
|
|
480 |
child {node {\qq(\qq\,E\,\qq)\qq}
|
|
481 |
child {node {F}
|
|
482 |
child {node {T \qq+\qq{} T}
|
|
483 |
child {node {3}}
|
|
484 |
child {node {4}}
|
|
485 |
}
|
|
486 |
}}
|
|
487 |
}};
|
|
488 |
\end{tikzpicture}
|
|
489 |
\end{center}
|
|
490 |
|
|
491 |
\begin{textblock}{5}(1, 5)
|
|
492 |
\bl{\texttt{(2*3)+(3+4)}}
|
|
493 |
\end{textblock}
|
|
494 |
|
|
495 |
\end{frame}}
|
|
496 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
44
|
497 |
|
|
498 |
\end{document}
|
|
499 |
|
|
500 |
%%% Local Variables:
|
|
501 |
%%% mode: latex
|
|
502 |
%%% TeX-master: t
|
|
503 |
%%% End:
|
|
504 |
|