34
|
1 |
|
|
2 |
// a class for deterministic finite automata,
|
|
3 |
// the type of states is kept polymorphic
|
|
4 |
|
|
5 |
case class Automaton[A](start: A, states: Set[A], delta: Map[(A, Char), A], fins: Set[A]) {
|
|
6 |
|
|
7 |
// the transition function lifted to list of characters
|
|
8 |
def deltas(q: A, cs: List[Char]) : Either[A, String] =
|
|
9 |
if (states.contains(q)) cs match {
|
|
10 |
case Nil => Left(q)
|
|
11 |
case c::cs =>
|
|
12 |
if (delta.isDefinedAt(q, c)) deltas(delta(q, c), cs)
|
|
13 |
else Right(q + " does not have a transition for " + c)
|
|
14 |
}
|
|
15 |
else Right(q + " is not a state of the automaton")
|
|
16 |
|
|
17 |
// wether a string is accepted by the automaton
|
|
18 |
def accepts(s: String) = deltas(start, s.toList) match {
|
|
19 |
case Left(q) => fins.contains(q)
|
|
20 |
case _ => false
|
|
21 |
}
|
|
22 |
}
|
|
23 |
|
|
24 |
|
|
25 |
// translating a regular expression into a finite
|
|
26 |
// automaton
|
|
27 |
|
|
28 |
abstract class Rexp
|
|
29 |
|
|
30 |
case object NULL extends Rexp
|
|
31 |
case object EMPTY extends Rexp
|
|
32 |
case class CHAR(c: Char) extends Rexp
|
|
33 |
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
|
|
34 |
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
|
|
35 |
case class STAR(r: Rexp) extends Rexp
|
|
36 |
|
|
37 |
implicit def string2rexp(s : String) = {
|
|
38 |
def chars2rexp (cs: List[Char]) : Rexp = cs match {
|
|
39 |
case Nil => EMPTY
|
|
40 |
case c::Nil => CHAR(c)
|
|
41 |
case c::cs => SEQ(CHAR(c), chars2rexp(cs))
|
|
42 |
}
|
|
43 |
chars2rexp(s.toList)
|
|
44 |
}
|
|
45 |
|
|
46 |
def nullable (r: Rexp) : Boolean = r match {
|
|
47 |
case NULL => false
|
|
48 |
case EMPTY => true
|
|
49 |
case CHAR(_) => false
|
|
50 |
case ALT(r1, r2) => nullable(r1) || nullable(r2)
|
|
51 |
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
|
|
52 |
case STAR(_) => true
|
|
53 |
}
|
|
54 |
|
|
55 |
def der (r: Rexp, c: Char) : Rexp = r match {
|
|
56 |
case NULL => NULL
|
|
57 |
case EMPTY => NULL
|
|
58 |
case CHAR(d) => if (c == d) EMPTY else NULL
|
|
59 |
case ALT(r1, r2) => ALT(der(r1, c), der(r2, c))
|
|
60 |
case SEQ(r1, r2) => if (nullable(r1)) ALT(SEQ(der(r1, c), r2), der(r2, c))
|
|
61 |
else SEQ(der(r1, c), r2)
|
|
62 |
case STAR(r) => SEQ(der(r, c), STAR(r))
|
|
63 |
}
|
|
64 |
|
|
65 |
|
|
66 |
// Here we construct an automaton whose
|
|
67 |
// states are regular expressions
|
|
68 |
type State = Rexp
|
|
69 |
type States = Set[State]
|
|
70 |
type Transition = Map[(State, Char), State]
|
|
71 |
|
35
|
72 |
// we use as an alphabet all lowercase letters
|
|
73 |
val alphabet = "abcdefghijklmnopqrstuvwxyz".toSet
|
|
74 |
|
34
|
75 |
def goto(q: State, c: Char, qs: States, delta: Transition) : (States, Transition) = {
|
35
|
76 |
val q_der : State = der(q, c)
|
|
77 |
if (qs.contains(q_der)) (qs, delta + ((q, c) -> q))
|
|
78 |
else explore(qs + q_der, delta + ((q, c) -> q_der), q_der)
|
34
|
79 |
}
|
|
80 |
|
|
81 |
def explore (qs: States, delta: Transition, q: State) : (States, Transition) =
|
|
82 |
alphabet.foldRight[(States, Transition)] (qs, delta) ((c, qsd) => goto(q, c, qsd._1, qsd._2))
|
|
83 |
|
|
84 |
|
|
85 |
def mk_automaton (r: Rexp) : Automaton[Rexp] = {
|
|
86 |
val (qs, delta) = explore(Set(r), Map(), r);
|
|
87 |
val fins = for (q <- qs if nullable(q)) yield q;
|
|
88 |
Automaton[Rexp](r, qs, delta, fins)
|
|
89 |
}
|
|
90 |
|
|
91 |
val A = mk_automaton(ALT("ab","ac"))
|
|
92 |
|
43
|
93 |
A.start
|
|
94 |
A.states.toList.length
|
|
95 |
|
34
|
96 |
println(A.accepts("bd"))
|
|
97 |
println(A.accepts("ab"))
|
|
98 |
println(A.accepts("ac"))
|
43
|
99 |
|
|
100 |
val r1 = STAR(ALT("a","b"))
|
|
101 |
val r2 = SEQ("b","b")
|
|
102 |
val r3 = SEQ(SEQ(SEQ(r1, r2), r1), "a")
|
|
103 |
val B = mk_automaton(r3)
|
|
104 |
|
|
105 |
B.start
|
|
106 |
B.states.toList.length
|