487
|
1 |
// Thompson Construction
|
733
|
2 |
//=======================
|
|
3 |
|
|
4 |
import $file.dfa, dfa._
|
|
5 |
import $file.nfa, nfa._
|
|
6 |
import $file.enfa, enfa._
|
487
|
7 |
|
|
8 |
|
|
9 |
// states for Thompson construction
|
|
10 |
case class TState(i: Int) extends State
|
|
11 |
|
|
12 |
object TState {
|
|
13 |
var counter = 0
|
|
14 |
|
|
15 |
def apply() : TState = {
|
|
16 |
counter += 1;
|
733
|
17 |
new TState(counter)
|
487
|
18 |
}
|
|
19 |
}
|
|
20 |
|
|
21 |
|
|
22 |
// some types abbreviations
|
|
23 |
type NFAt = NFA[TState, Char]
|
|
24 |
type NFAtrans = (TState, Char) :=> Set[TState]
|
|
25 |
type eNFAtrans = (TState, Option[Char]) :=> Set[TState]
|
|
26 |
|
733
|
27 |
|
487
|
28 |
// NFA that does not accept any string
|
|
29 |
def NFA_ZERO(): NFAt = {
|
486
|
30 |
val Q = TState()
|
|
31 |
NFA(Set(Q), { case _ => Set() }, Set())
|
|
32 |
}
|
|
33 |
|
487
|
34 |
// NFA that accepts the empty string
|
|
35 |
def NFA_ONE() : NFAt = {
|
486
|
36 |
val Q = TState()
|
|
37 |
NFA(Set(Q), { case _ => Set() }, Set(Q))
|
|
38 |
}
|
|
39 |
|
487
|
40 |
// NFA that accepts the string "c"
|
|
41 |
def NFA_CHAR(c: Char) : NFAt = {
|
486
|
42 |
val Q1 = TState()
|
|
43 |
val Q2 = TState()
|
|
44 |
NFA(Set(Q1), { case (Q1, d) if (c == d) => Set(Q2) }, Set(Q2))
|
|
45 |
}
|
|
46 |
|
753
|
47 |
|
|
48 |
// for composing an eNFA transition with an NFA transition
|
|
49 |
// | is for set union
|
932
|
50 |
extension (f: eNFAtrans) {
|
753
|
51 |
def +++(g: NFAtrans) : eNFAtrans =
|
|
52 |
{ case (q, None) => applyOrElse(f, (q, None))
|
|
53 |
case (q, Some(c)) => applyOrElse(f, (q, Some(c))) | applyOrElse(g, (q, c)) }
|
|
54 |
}
|
|
55 |
|
|
56 |
|
487
|
57 |
// sequence of two NFAs
|
779
|
58 |
def NFA_SEQ(nfa1: NFAt, nfa2: NFAt) : NFAt = {
|
487
|
59 |
val new_delta : eNFAtrans =
|
779
|
60 |
{ case (q, None) if nfa1.fins(q) => nfa2.starts }
|
487
|
61 |
|
779
|
62 |
eNFA(nfa1.starts,
|
|
63 |
new_delta +++ nfa1.delta +++ nfa2.delta,
|
|
64 |
nfa2.fins)
|
487
|
65 |
}
|
|
66 |
|
|
67 |
// alternative of two NFAs
|
779
|
68 |
def NFA_ALT(nfa1: NFAt, nfa2: NFAt) : NFAt = {
|
489
|
69 |
val new_delta : NFAtrans = {
|
779
|
70 |
case (q, c) => applyOrElse(nfa1.delta, (q, c)) |
|
|
71 |
applyOrElse(nfa2.delta, (q, c)) }
|
|
72 |
val new_fins = (q: TState) => nfa1.fins(q) || nfa2.fins(q)
|
486
|
73 |
|
779
|
74 |
NFA(nfa1.starts | nfa2.starts, new_delta, new_fins)
|
486
|
75 |
}
|
|
76 |
|
487
|
77 |
// star of a NFA
|
779
|
78 |
def NFA_STAR(nfa: NFAt) : NFAt = {
|
486
|
79 |
val Q = TState()
|
|
80 |
val new_delta : eNFAtrans =
|
779
|
81 |
{ case (Q, None) => nfa.starts
|
|
82 |
case (q, None) if nfa.fins(q) => Set(Q) }
|
486
|
83 |
|
779
|
84 |
eNFA(Set(Q), new_delta +++ nfa.delta, Set(Q))
|
487
|
85 |
}
|
|
86 |
|
|
87 |
|
733
|
88 |
// We are now ready to translate regular expressions
|
|
89 |
// into DFAs (via eNFAs and NFAs, and the subset construction)
|
487
|
90 |
|
|
91 |
// regular expressions
|
|
92 |
abstract class Rexp
|
|
93 |
case object ZERO extends Rexp // matches nothing
|
|
94 |
case object ONE extends Rexp // matches the empty string
|
|
95 |
case class CHAR(c: Char) extends Rexp // matches a character c
|
|
96 |
case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative
|
|
97 |
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence
|
|
98 |
case class STAR(r: Rexp) extends Rexp // star
|
|
99 |
|
|
100 |
// thompson construction
|
|
101 |
def thompson (r: Rexp) : NFAt = r match {
|
|
102 |
case ZERO => NFA_ZERO()
|
|
103 |
case ONE => NFA_ONE()
|
|
104 |
case CHAR(c) => NFA_CHAR(c)
|
|
105 |
case ALT(r1, r2) => NFA_ALT(thompson(r1), thompson(r2))
|
|
106 |
case SEQ(r1, r2) => NFA_SEQ(thompson(r1), thompson(r2))
|
|
107 |
case STAR(r1) => NFA_STAR(thompson(r1))
|
486
|
108 |
}
|
487
|
109 |
|
|
110 |
//optional regular expression (one or zero times)
|
|
111 |
def OPT(r: Rexp) = ALT(r, ONE)
|
|
112 |
|
|
113 |
//n-times regular expression (explicitly expanded)
|
|
114 |
def NTIMES(r: Rexp, n: Int) : Rexp = n match {
|
|
115 |
case 0 => ONE
|
|
116 |
case 1 => r
|
|
117 |
case n => SEQ(r, NTIMES(r, n - 1))
|
|
118 |
}
|
|
119 |
|
|
120 |
|
733
|
121 |
def tmatches_nfa(r: Rexp, s: String) : Boolean =
|
488
|
122 |
thompson(r).accepts(s.toList)
|
|
123 |
|
733
|
124 |
def tmatches_nfa2(r: Rexp, s: String) : Boolean =
|
488
|
125 |
thompson(r).accepts2(s.toList)
|
|
126 |
|
733
|
127 |
// dfas via subset construction
|
491
|
128 |
def tmatches_dfa(r: Rexp, s: String) : Boolean =
|
|
129 |
subset(thompson(r)).accepts(s.toList)
|
488
|
130 |
|
487
|
131 |
// Test Cases
|
733
|
132 |
//============
|
488
|
133 |
|
487
|
134 |
// the evil regular expression a?{n} a{n}
|
489
|
135 |
def EVIL1(n: Int) : Rexp = SEQ(NTIMES(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n))
|
487
|
136 |
|
|
137 |
// the evil regular expression (a*)*b
|
489
|
138 |
val EVIL2 : Rexp = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
|
487
|
139 |
|
|
140 |
//for measuring time
|
|
141 |
def time_needed[T](i: Int, code: => T) = {
|
|
142 |
val start = System.nanoTime()
|
|
143 |
for (j <- 1 to i) code
|
|
144 |
val end = System.nanoTime()
|
|
145 |
(end - start)/(i * 1.0e9)
|
488
|
146 |
}
|
487
|
147 |
|
|
148 |
// the size of the NFA can be large,
|
|
149 |
// thus slowing down the breadth-first search
|
779
|
150 |
println("Breadth-first search EVIL1 / EVIL2")
|
487
|
151 |
|
489
|
152 |
for (i <- 1 to 13) {
|
967
|
153 |
println(s"$i: ${"%.5f".format(time_needed(2, tmatches_nfa(EVIL1(i), "a" * i)))}")
|
487
|
154 |
}
|
|
155 |
|
489
|
156 |
for (i <- 1 to 100 by 5) {
|
967
|
157 |
println(s"$i: ${"%.5f".format(time_needed(2, tmatches_nfa(EVIL2, "a" * i)))}")
|
487
|
158 |
}
|
|
159 |
|
|
160 |
|
733
|
161 |
// the backtracking that is needed in depth-first
|
|
162 |
// search can be painfully slow
|
779
|
163 |
println("Depth-first search EVIL1 / EVIL2")
|
487
|
164 |
|
779
|
165 |
for (i <- 1 to 9) {
|
967
|
166 |
println(s"$i: ${"%.5f".format(time_needed(2, tmatches_nfa2(EVIL1(i), "a" * i)))}")
|
779
|
167 |
}
|
|
168 |
|
|
169 |
for (i <- 1 to 7) {
|
967
|
170 |
println(s"$i: ${"%.5f".format(time_needed(2, tmatches_nfa2(EVIL2, "a" * i)))}")
|
487
|
171 |
}
|
491
|
172 |
|
|
173 |
|
|
174 |
|
586
|
175 |
// while my thompson->enfa->subset->partial-function-chain
|
491
|
176 |
// is probably not the most effcient way to obtain a fast DFA
|
521
|
177 |
// (the test below should be much faster with a more direct
|
|
178 |
// construction), in general the DFAs can be slow because of
|
|
179 |
// the state explosion in the subset construction
|
491
|
180 |
|
742
|
181 |
for (i <- 1 to 7) {
|
967
|
182 |
println(s"$i: ${"%.5f".format(time_needed(2, tmatches_dfa(EVIL1(i), "a" * i)))}")
|
491
|
183 |
}
|
|
184 |
|
|
185 |
for (i <- 1 to 100 by 5) {
|
967
|
186 |
println(s"$i: ${"%.5f".format(time_needed(2, tmatches_dfa(EVIL2, "a" * i)))}")
|
491
|
187 |
}
|
784
|
188 |
|
|
189 |
|
|
190 |
|
|
191 |
|
|
192 |
|