author | Christian Urban <christian dot urban at kcl dot ac dot uk> |
Fri, 17 Oct 2014 14:18:15 +0100 | |
changeset 286 | 19020b75d75e |
parent 285 | 8a222559278f |
child 287 | 2c50b8b5886c |
permissions | -rw-r--r-- |
251
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1 |
\documentclass{article} |
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2 |
\usepackage{../style} |
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3 |
\usepackage{../langs} |
282
3e3b927a85cf
added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
251
diff
changeset
|
4 |
\usepackage{../graphics} |
251
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5 |
|
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
6 |
|
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
7 |
\begin{document} |
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
8 |
|
282
3e3b927a85cf
added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
251
diff
changeset
|
9 |
\section*{Handout 4 (Sulzmann \& Lu Algorithm)} |
3e3b927a85cf
added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
251
diff
changeset
|
10 |
|
3e3b927a85cf
added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
251
diff
changeset
|
11 |
So far our algorithm based on derivatives was only able to say |
3e3b927a85cf
added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
251
diff
changeset
|
12 |
yes or no depending on whether a string was matched by regular |
3e3b927a85cf
added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
251
diff
changeset
|
13 |
expression or not. Often a more interesting question is to |
3e3b927a85cf
added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
251
diff
changeset
|
14 |
find out \emph{how} a regular expression matched a string? |
3e3b927a85cf
added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
251
diff
changeset
|
15 |
Answering this question will help us with the problem we are |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
16 |
after, namely tokenising an input string. The algorithm we |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
17 |
will be looking at for this was designed by Sulzmann \& Lu in |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
18 |
a rather recent paper. A link to it is provided on KEATS, in |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
19 |
case you are interested.\footnote{In my humble opinion this is |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
20 |
an interesting instance of the research literature: it |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
21 |
contains a very neat idea, but its presentation is rather |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
22 |
sloppy. In earlier versions of their paper, students and I |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
23 |
found several rather annoying typos in their examples and |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
24 |
definitions.} |
282
3e3b927a85cf
added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
251
diff
changeset
|
25 |
|
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
26 |
In order to give an answer for how a regular expression |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
27 |
matched a string, Sulzmann and Lu introduce \emph{values}. A |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
28 |
value will be the output of the algorithm whenever the regular |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
29 |
expression matches the string. If not, an error will be |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
30 |
raised. Since the first phase of the algorithm by Sulzmann \& |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
31 |
Lu is identical to the derivative based matcher from the first |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
32 |
coursework, the function $nullable$ will be used to decide |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
33 |
whether as string is matched by a regular expression. If |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
34 |
$nullable$ says yes, then values are constructed that reflect |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
35 |
how the regular expression matched the string. The definitions |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
36 |
for regular expressions $r$ and values $v$ is shown next to |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
37 |
each other below: |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
38 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
39 |
\begin{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
40 |
\begin{tabular}{cc} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
41 |
\begin{tabular}{@{}rrl@{}} |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
42 |
\multicolumn{3}{c}{regular expressions}\\ |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
43 |
$r$ & $::=$ & $\varnothing$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
44 |
& $\mid$ & $\epsilon$ \\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
45 |
& $\mid$ & $c$ \\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
46 |
& $\mid$ & $r_1 \cdot r_2$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
47 |
& $\mid$ & $r_1 + r_2$ \\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
48 |
\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
49 |
& $\mid$ & $r^*$ \\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
50 |
\end{tabular} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
51 |
& |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
52 |
\begin{tabular}{@{\hspace{0mm}}rrl@{}} |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
53 |
\multicolumn{3}{c}{values}\\ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
54 |
$v$ & $::=$ & \\ |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
55 |
& & $Empty$ \\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
56 |
& $\mid$ & $Char(c)$ \\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
57 |
& $\mid$ & $Seq(v_1,v_2)$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
58 |
& $\mid$ & $Left(v)$ \\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
59 |
& $\mid$ & $Right(v)$ \\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
60 |
& $\mid$ & $[v_1,\ldots\,v_n]$ \\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
61 |
\end{tabular} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
62 |
\end{tabular} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
63 |
\end{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
64 |
|
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
65 |
\noindent The point is that there is a very strong |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
66 |
correspondence between them. There is no value for the |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
67 |
$\varnothing$ regular expression, since it does not match any |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
68 |
string. Otherwise there is exactly one value corresponding to |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
69 |
each regular expression with the exception of $r_1 + r_2$ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
70 |
where there are two values, namely $Left(v)$ and $Right(v)$ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
71 |
corresponding to the two alternatives. Note that $r^*$ is |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
72 |
associated with a list of values, one for each copy of $r$ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
73 |
that was needed to match the string. This means we might also |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
74 |
return the empty list $[]$, if no copy was needed. |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
75 |
|
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
76 |
Graphically the algorithm by Sulzmann \& Lu can be represneted |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
77 |
by the picture in Figure~\ref{Sulz} where the path from the |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
78 |
left to the right involving $der/nullable$ is the first phase |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
79 |
of the algorithm and $mkeps/inj$, the path from right to left, |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
80 |
the second phase. This picture shows the steps required when a |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
81 |
regular expression, say $r_1$, matches the string $abc$. We |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
82 |
first build the three derivatives (according to $a$, $b$ and |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
83 |
$c$). We then use $nullable$ to find out whether the resulting |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
84 |
regular expression can match the empty string. If yes we call |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
85 |
the function $mkeps$. |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
86 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
87 |
\begin{figure}[t] |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
88 |
\begin{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
89 |
\begin{tikzpicture}[scale=2,node distance=1.2cm, |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
90 |
every node/.style={minimum size=7mm}] |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
91 |
\node (r1) {$r_1$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
92 |
\node (r2) [right=of r1]{$r_2$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
93 |
\draw[->,line width=1mm](r1)--(r2) node[above,midway] {$der\,a$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
94 |
\node (r3) [right=of r2]{$r_3$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
95 |
\draw[->,line width=1mm](r2)--(r3) node[above,midway] {$der\,b$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
96 |
\node (r4) [right=of r3]{$r_4$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
97 |
\draw[->,line width=1mm](r3)--(r4) node[above,midway] {$der\,c$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
98 |
\draw (r4) node[anchor=west] {\;\raisebox{3mm}{$nullable$}}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
99 |
\node (v4) [below=of r4]{$v_4$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
100 |
\draw[->,line width=1mm](r4) -- (v4); |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
101 |
\node (v3) [left=of v4] {$v_3$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
102 |
\draw[->,line width=1mm](v4)--(v3) node[below,midway] {$inj\,c$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
103 |
\node (v2) [left=of v3]{$v_2$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
104 |
\draw[->,line width=1mm](v3)--(v2) node[below,midway] {$inj\,b$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
105 |
\node (v1) [left=of v2] {$v_1$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
106 |
\draw[->,line width=1mm](v2)--(v1) node[below,midway] {$inj\,a$}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
107 |
\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{$mkeps$}}; |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
108 |
\end{tikzpicture} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
109 |
\end{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
110 |
\caption{The two phases of the algorithm by Sulzmann \& Lu. |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
111 |
\label{Sulz}} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
112 |
\end{figure} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
113 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
114 |
The $mkeps$ function calculates a value for how a regular |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
115 |
expression has matched the empty string. Its definition |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
116 |
is as follows: |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
117 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
118 |
\begin{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
119 |
\begin{tabular}{lcl} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
120 |
$mkeps(\epsilon)$ & $\dn$ & $Empty$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
121 |
$mkeps(r_1 + r_2)$ & $\dn$ & if $nullable(r_1)$ \\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
122 |
& & then $Left(mkeps(r_1))$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
123 |
& & else $Right(mkeps(r_2))$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
124 |
$mkeps(r_1 \cdot r_2)$ & $\dn$ & $Seq(mkeps(r_1),mkeps(r_2))$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
125 |
$mkeps(r^*)$ & $\dn$ & $[]$ \\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
126 |
\end{tabular} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
127 |
\end{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
128 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
129 |
\noindent There are no cases for $\epsilon$ and $c$, since |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
130 |
these regular expression cannot match the empty string. Note |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
131 |
also that in case of alternatives we give preference to the |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
132 |
regular expression on the left-hand side. This will become |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
133 |
important later on. |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
134 |
|
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
135 |
The second phase of the algorithm is organised recursively |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
136 |
such that it will calculate a value for how the derivative |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
137 |
regular expression has matched a string whose first character |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
138 |
has been chopped off. Now we need a function that reverses |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
139 |
this ``chopping off'' for values. The corresponding function |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
140 |
is called $inj$ for injection. This function takes three |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
141 |
arguments: the first one is a regular expression for which we |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
142 |
want to calculate the value, the second is the character we |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
143 |
want to inject and the third argument is the value where we |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
144 |
will inject the character. The result of this function is a |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
145 |
new value. The definition of $inj$ is as follows: |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
146 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
147 |
\begin{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
148 |
\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
149 |
$inj\,(c)\,c\,Empty$ & $\dn$ & $Char\,c$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
150 |
$inj\,(r_1 + r_2)\,c\,Left(v)$ & $\dn$ & $Left(inj\,r_1\,c\,v)$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
151 |
$inj\,(r_1 + r_2)\,c\,Right(v)$ & $\dn$ & $Right(inj\,r_2\,c\,v)$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
152 |
$inj\,(r_1 \cdot r_2)\,c\,Seq(v_1,v_2)$ & $\dn$ & $Seq(inj\,r_1\,c\,v_1,v_2)$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
153 |
$inj\,(r_1 \cdot r_2)\,c\,Left(Seq(v_1,v_2))$ & $\dn$ & $Seq(inj\,r_1\,c\,v_1,v_2)$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
154 |
$inj\,(r_1 \cdot r_2)\,c\,Right(v)$ & $\dn$ & $Seq(mkeps(r_1),inj\,r_2\,c\,v)$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
155 |
$inj\,(r^*)\,c\,Seq(v,vs)$ & $\dn$ & $inj\,r\,c\,v\,::\,vs$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
156 |
\end{tabular} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
157 |
\end{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
158 |
|
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
159 |
\noindent This definition is by recursion on the regular |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
160 |
expression and by analysing the shape of the values. Therefore |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
161 |
there are, for example, three cases for sequnece regular |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
162 |
expressions. The last clause for the star regular expression |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
163 |
returns a list where the first element is $inj\,r\,c\,v$ and |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
164 |
the other elements are $vs$. That mean $\_\,::\,\_$ should be |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
165 |
read as list cons. |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
166 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
167 |
To understand what is going on, it might be best to do some |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
168 |
example calculations and compare with Figure~\ref{Sulz}. For |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
169 |
this note that we have not yet dealt with the need of |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
170 |
simplifying regular expressions (this will be a topic on its |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
171 |
own later). Suppose the regular expression is $a \cdot (b |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
172 |
\cdot c)$ and the input string is $abc$. The derivatives from |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
173 |
the first phase are as follows: |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
174 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
175 |
\begin{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
176 |
\begin{tabular}{ll} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
177 |
$r_1$: & $a \cdot (b \cdot c)$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
178 |
$r_2$: & $\epsilon \cdot (b \cdot c)$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
179 |
$r_3$: & $(\varnothing \cdot (b \cdot c)) + (\epsilon \cdot c)$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
180 |
$r_4$: & $(\varnothing \cdot (b \cdot c)) + ((\varnothing \cdot c) + \epsilon)$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
181 |
\end{tabular} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
182 |
\end{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
183 |
|
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
184 |
\noindent According to the simple algorithm, we would test |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
185 |
whether $r_4$ is nullable, which in this case it is. This |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
186 |
means we can use the function $mkeps$ to calculate a value for |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
187 |
how $r_4$ was able to match the empty string. Remember that |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
188 |
this function gives preference for alternatives on the |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
189 |
left-hand side. However there is only $\epsilon$ on the very |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
190 |
right-hand side of $r_4$ that matches the empty string. |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
191 |
Therefore $mkeps$ returns the value |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
192 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
193 |
\begin{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
194 |
$v_4:\;Right(Right(Empty))$ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
195 |
\end{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
196 |
|
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
197 |
\noindent The point is that from this value we can directly |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
198 |
read off which part of $r_4$ matched the empty string. Next we |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
199 |
have to ``inject'' the last character, that is $c$ in the |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
200 |
running example, into this value $v_4$ in order to calculate |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
201 |
how $r_3$ could have matched the string $c$. According to the |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
202 |
definition of $inj$ we obtain |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
203 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
204 |
\begin{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
205 |
$v_3:\;Right(Seq(Empty, Char(c)))$ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
206 |
\end{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
207 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
208 |
\noindent This is the correct result, because $r_3$ needs |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
209 |
to use the right-hand alternative, and then $\epsilon$ needs |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
210 |
to match the empty string and $c$ needs to match $c$. |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
211 |
Next we need to inject back the letter $b$ into $v_3$. This |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
212 |
gives |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
213 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
214 |
\begin{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
215 |
$v_2:\;Seq(Empty, Seq(Char(b), Char(c)))$ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
216 |
\end{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
217 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
218 |
\noindent Finally we need to inject back the letter $a$ into |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
219 |
$v_2$ giving the final result |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
220 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
221 |
\begin{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
222 |
$v_1:\;Seq(Char(a), Seq(Char(b), Char(c)))$ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
223 |
\end{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
224 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
225 |
\noindent This now corresponds to how the regular |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
226 |
expression $a \cdot (b \cdot c)$ matched the string $abc$. |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
227 |
|
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
228 |
There are a few auxiliary functions that are of interest |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
229 |
in analysing this algorithm. One is called \emph{flatten}, |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
230 |
written $|\_|$, which extracts the string ``underlying'' a |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
231 |
value. It is defined recursively as |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
232 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
233 |
\begin{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
234 |
\begin{tabular}{lcl} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
235 |
$|Empty|$ & $\dn$ & $[]$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
236 |
$|Char(c)|$ & $\dn$ & $[c]$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
237 |
$|Left(v)|$ & $\dn$ & $|v|$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
238 |
$|Right(v)|$ & $\dn$ & $|v|$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
239 |
$|Seq(v_1,v_2)|$& $\dn$ & $|v_1| \,@\, |v_2|$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
240 |
$|[v_1,\ldots ,v_n]|$ & $\dn$ & $|v_1| \,@\ldots @\, |v_n|$\\ |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
241 |
\end{tabular} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
242 |
\end{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
243 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
244 |
\noindent Using flatten we can see what is the string behind |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
245 |
the values calculated by $mkeps$ and $inj$ in our running |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
246 |
example are: |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
247 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
248 |
\begin{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
249 |
\begin{tabular}{ll} |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
250 |
$|v_4|$: & $[]$\\ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
251 |
$|v_3|$: & $c$\\ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
252 |
$|v_2|$: & $bc$\\ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
253 |
$|v_1|$: & $abc$ |
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
254 |
\end{tabular} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
255 |
\end{center} |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
256 |
|
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
257 |
\noindent |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
258 |
This indicates that $inj$ indeed is injecting, or adding, back |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
259 |
a character into the value. |
282
3e3b927a85cf
added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
251
diff
changeset
|
260 |
|
3e3b927a85cf
added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
251
diff
changeset
|
261 |
|
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
262 |
\subsubsection*{Simplification} |
282
3e3b927a85cf
added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
251
diff
changeset
|
263 |
|
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
264 |
Generally the matching algorithms based on derivatives do |
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
265 |
poorly unless the regular expressions are simplified after |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
266 |
each derivatives step. But this is a bit more involved in |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
267 |
algorithm of Sulzmann \& Lu. Consider the last derivation |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
268 |
step in our running example |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
269 |
|
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
270 |
\begin{center} |
285
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
271 |
$r_4 = der\,c\,r_3 = (\varnothing \cdot (b \cdot c)) + ((\varnothing \cdot c) + \epsilon)$ |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
272 |
\end{center} |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
273 |
|
285
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
274 |
\noindent Simplifying the result would just give us |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
275 |
$\epsilon$. Running $mkeps$ on this regular expression would |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
276 |
then provide us with $Empty$ instead of $Right(Right(Empty))$ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
277 |
that was obtained without the simplification. The problem is |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
278 |
we need to recreate this more complicated value, rather than |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
279 |
just $Empty$. |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
280 |
|
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
281 |
This requires what I call \emph{rectification functions}. They |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
282 |
need to be calculated whenever a regular expression gets |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
283 |
simplified. Rectification functions take a value as argument |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
284 |
and return a (rectified) value. Our simplification rules so |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
285 |
far are |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
286 |
|
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
287 |
\begin{center} |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
288 |
\begin{tabular}{l@{\hspace{2mm}}c@{\hspace{2mm}}l} |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
289 |
$r \cdot \varnothing$ & $\mapsto$ & $\varnothing$\\ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
290 |
$\varnothing \cdot r$ & $\mapsto$ & $\varnothing$\\ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
291 |
$r \cdot \epsilon$ & $\mapsto$ & $r$\\ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
292 |
$\epsilon \cdot r$ & $\mapsto$ & $r$\\ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
293 |
$r + \varnothing$ & $\mapsto$ & $r$\\ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
294 |
$\varnothing + r$ & $\mapsto$ & $r$\\ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
295 |
$r + r$ & $\mapsto$ & $r$\\ |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
296 |
\end{tabular} |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
297 |
\end{center} |
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
298 |
|
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
299 |
\noindent Applying them to $r_4$ will require several nested |
285
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
300 |
simplifications in order end up with just $\epsilon$. |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
301 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
302 |
We can implement this by letting simp return not just a |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
303 |
(simplified) regular expression, but also a rectification |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
304 |
function. Let us consider the alternative case, say $r_1 + |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
305 |
r_2$, first. We would first simplify the component regular |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
306 |
expressions $r_1$ and $r_2.$ This will return simplified |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
307 |
versions (if they can be simplified), say $r_{1s}$ and |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
308 |
$r_{2s}$, but also two rectification functions $f_{1s}$ and |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
309 |
$f_{2s}$. We need to assemble them in order to obtain a |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
310 |
rectified value for $r_1 + r_2$. In case $r_{1s}$ simplified |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
311 |
to $\varnothing$, we would continue the derivative calculation |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
312 |
with $r_{2s}$. The Sulzmann \& Lu algorithm would return a |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
313 |
corresponding value, say $v_{2s}$. But now this needs to |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
314 |
be ``rectified'' to the value |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
315 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
316 |
\begin{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
317 |
$Right(v_{2s})$ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
318 |
\end{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
319 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
320 |
\noindent Unfortunately, this is not enough because there |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
321 |
might be some simplifications that happened inside $r_2$ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
322 |
and for which the simplification function retuned also |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
323 |
a rectification function $f_{2s}$. So in fact we need to |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
324 |
apply this one too which gives |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
325 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
326 |
\begin{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
327 |
$Right(f_{2s}(v_{2s}))$ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
328 |
\end{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
329 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
330 |
\noindent So if we want to return this as function, |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
331 |
we would need to return |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
332 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
333 |
\begin{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
334 |
$\lambda v.\,Right(f_{2s}(v))$ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
335 |
\end{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
336 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
337 |
\noindent which is the lambda-calculus notation for |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
338 |
a function that expects a value $v$ and returns everything |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
339 |
after the dot where $v$ is replaced by whatever value is |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
340 |
given. |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
341 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
342 |
Let us package these ideas into a single function (still only |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
343 |
considering the alternative case): |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
344 |
|
285
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
345 |
\begin{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
346 |
\begin{tabular}{l} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
347 |
$simp(r)$:\\ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
348 |
\quad case $r = r_1 + r_2$\\ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
349 |
\qquad let $(r_{1s}, f_{1s}) = simp(r_1)$\\ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
350 |
\qquad \phantom{let} $(r_{2s}, f_{2s}) = simp(r_2)$\smallskip\\ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
351 |
\qquad case $r_{1s} = \varnothing$: |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
352 |
return $(r_{2s}, \lambda v. \,Right(f_{2s}(v)))$\\ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
353 |
\qquad case $r_{2s} = \varnothing$: |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
354 |
return $(r_{1s}, \lambda v. \,Left(f_{1s}(v)))$\\ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
355 |
\qquad otherwise: |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
356 |
return $(r_{1s} + r_{2s}, f_{alt}(f_{1s}, f_{2s}))$\\ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
357 |
\end{tabular} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
358 |
\end{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
359 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
360 |
\noindent We first recursively call the simlification with $r_1$ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
361 |
and $r_2$. This gives simplified regular expressions, $r_{1s}$ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
362 |
and $r_{2s}$, as well as two rectification functions $f_{1s}$ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
363 |
and $f_{2s}$. We next need to test whether the simplified |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
364 |
regular expressions are $\varnothing$ so as to make further |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
365 |
simplifications. In case $r_{1s}$ is $\varnothing$ then |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
366 |
we can return $r_{2s}$ (the other alternative). However |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
367 |
we need to now build a rectification function, which as |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
368 |
said above is |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
369 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
370 |
\begin{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
371 |
$\lambda v.\,Right(f_{2s}(v))$ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
372 |
\end{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
373 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
374 |
\noindent The case where $r_{2s} = \varnothing$ is similar. |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
375 |
We return $r_{1s}$ but now have to rectify such that we return |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
376 |
|
285
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
377 |
\begin{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
378 |
$\lambda v.\,Left(f_{1s}(v))$ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
379 |
\end{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
380 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
381 |
\noindent Note that in this case we have to apply $f_{1s}$, |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
382 |
not $f_{2s}$, which is responsible to rectify the inner parts |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
383 |
of $v$. The otherwise-case is slightly interesting. In this |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
384 |
case neither $r_{1s}$ nor $r_{2s}$ are $\varnothing$ and no |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
385 |
further simplification can be applied. Accordingly, we return |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
386 |
$r_{1s} + r_{2s}$ as the simplified regular expression. In |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
387 |
principle we also do not have to do any rectification, because |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
388 |
no simplification was done in this case. But this is actually |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
389 |
not true: There might have been simplifications inside |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
390 |
$r_{1s}$ and $r_2s$. We therefore need to take into account |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
391 |
the calculated rectification functions $f_{1s}$ and $f_{2s}$. |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
392 |
We can do this by defining a rectification function $f_{alt}$ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
393 |
which takes two rectification functions as arguments |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
394 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
395 |
\begin{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
396 |
\begin{tabular}{l@{\hspace{1mm}}l} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
397 |
$f_{alt}(f_1, f_2) \dn$\\ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
398 |
\qquad $\lambda v.\,$ case $v = Left(v')$: |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
399 |
& return $Left(f_1(v'))$\\ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
400 |
\qquad \phantom{$\lambda v.\,$} case $v = Right(v')$: |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
401 |
& return $Right(f_2(v'))$\\ |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
402 |
\end{tabular} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
403 |
\end{center} |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
404 |
|
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
405 |
\noindent In essence we need to apply in this case |
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
406 |
the appropriate rectification function to the inner part |
286
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
407 |
of the value $v$, whereby $v$ can only be of the form |
285
8a222559278f
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
284
diff
changeset
|
408 |
$Right(\_)$ or $Left(\_)$. |
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
409 |
|
286
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
410 |
The other interesting case with simplification is the |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
411 |
sequence case. Here the main simplification function |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
412 |
is as follows |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
413 |
|
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
414 |
\begin{center} |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
415 |
\begin{tabular}{l} |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
416 |
$simp(r)$:\qquad\qquad (continued)\\ |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
417 |
\quad case $r = r_1 \cdot r_2$\\ |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
418 |
\qquad let $(r_{1s}, f_{1s}) = simp(r_1)$\\ |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
419 |
\qquad \phantom{let} $(r_{2s}, f_{2s}) = simp(r_2)$\smallskip\\ |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
420 |
\qquad case $r_{1s} = \varnothing$: |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
421 |
return $(\varnothing, f_{error})$\\ |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
422 |
\qquad case $r_{2s} = \varnothing$: |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
423 |
return $(\varnothing, f_{error})$\\ |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
424 |
\qquad case $r_{1s} = \epsilon$: |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
425 |
return $(r_{2s}, \lambda v. \,Seq(f_{1s}(Empty), f_{2s}(v)))$\\ |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
426 |
\qquad case $r_{2s} = \epsilon$: |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
427 |
return $(r_{1s}, \lambda v. \,Seq(f_{1s}(v), f_{2s}(Empty)))$\\ |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
428 |
\qquad otherwise: |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
429 |
return $(r_{1s} \cdot r_{2s}, f_{seq}(f_{1s}, f_{2s}))$\\ |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
430 |
\end{tabular} |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
431 |
\end{center} |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
432 |
|
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
433 |
\noindent whereby $f_{seq}$ is again pushing the two |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
434 |
rectification functions into the two components of |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
435 |
the Seq-value: |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
436 |
|
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
437 |
\begin{center} |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
438 |
\begin{tabular}{l@{\hspace{1mm}}l} |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
439 |
$f_{seq}(f_1, f_2) \dn$\\ |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
440 |
\qquad $\lambda v.\,$ case $v = Seq(v_1, v_2)$: |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
441 |
& return $Seq(f_1(v_1), f_2(v_2))$\\ |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
442 |
\end{tabular} |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
443 |
\end{center} |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
444 |
|
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
445 |
\noindent Note that in the case of $r_{1s}$ (similarly $r_{2s}$) |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
446 |
we use the function $f_{error}$ for rectification. If you |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
447 |
think carefully, then you will see that this function will |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
448 |
actually never been called. Because a sequence with |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
449 |
$\varnothing$ will never recognise any string and therefore |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
450 |
the second phase of the algorithm would never been called. |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
451 |
The simplification function still expects us to give a |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
452 |
function. So in my own implementation I just returned |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
453 |
a function which raises an error. |
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
454 |
|
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
455 |
|
19020b75d75e
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
285
diff
changeset
|
456 |
|
284
0afe43616b6a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
283
diff
changeset
|
457 |
\subsubsection*{Records and Tokenisation} |
251
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
458 |
|
283
c14e5ebf0c3b
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
282
diff
changeset
|
459 |
\newpage |
251
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
460 |
Algorithm by Sulzmann, Lexing |
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
461 |
|
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
462 |
\end{document} |
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
463 |
|
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
464 |
%%% Local Variables: |
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
465 |
%%% mode: latex |
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
466 |
%%% TeX-master: t |
5b5a68df6d16
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
467 |
%%% End: |